Maturity detection of Hemerocallis citrina Baroni based on LTCB YOLO and lightweight and efficient layer aggregation network
Abstract
Key words: Hemerocallis citrina Baroni; maturity detection; YOLOv7; lightweight model; efficient layer aggregation network
DOI: 10.25165/j.ijabe.20251802.9238
Citation: Chen L, Wu L G, Wu Y Q. Maturity detection of Hemerocallis citrina Baroni based on LTCB YOLO and lightweight and efficient layer aggregation network. Int J Agric & Biol Eng, 2025; 18(2): 278–287.
Keywords
Full Text:
PDFReferences
Wu L G, Chen L, Zhou Q, Shi J H, Ma Y B. Maturity detection method for Hemerocallis citrina baroni based on lightweight and efficient layer aggregation network. Transactions of the CSAM, 2024; 55(2): 268–277. (in Chinese)
Shi L, Yang C K, Sun X Y, Sun J Y, Dong P, Xiong S F, et al. Detection of fusarium head blight using a YOLOv5sbased method improved by attention mechanism. Int J Agric & Biol Eng, 2024; 17(5): 247–254.
Wu L G, Chen L, Liu Z P, Wu Y Q, Shi J H. YOLOv8-ABW based method for detecting Hemerocallis citrina Baroni maturity. Transactions of the CSAE, 2024; 40(13): 262–272.
Wang Q F, Cheng M, Huang S, Cai Z J, Zhang J L, Yuan H B. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings. Computers and Electronics in Agriculture, 2022; 199: 107194.
Wu D, Lv S, Jiang M, Song H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Computers and Electronics in Agriculture, 2020; 178: 105742.
Hui Y M, Wang J, Li B. DSAA-YOLO: UAV remote sensing small target recognition algorithm for YOLOV7 based on dense residual super-resolution and anchor frame adaptive regression strategy. Journal of King Saud University - Computer and Information Sciences, 2024; Paper ID: 101863. DOI: 10.1016/j.jksuci.2023.101863
Xu W, Xu T, Thomasson J, Chen W, Karthikeyan R, Tian G Z, et al. A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments. Computers and Electronics in Agriculture, 2023; 211: 107961.
Liu B P, Zhang Y Z, Wang J H, Luo L F, Lu Q H, Wei H L, et al. An improved lightweight network based on deep learning for grape recognition in unstructured environments. Information Processing in Agriculture, 2024; 11(2): 202–216.
Ngugi L, Abdelwahab M, Abo-Zahhad M. A new approach to learning and recognizing leaf diseases from individual lesions using convolutional neural networks. Information Processing in Agriculture, 2023; 10: 11–27.
Ahmed I, Dan S, Jeon G, Piccialli F, Fortino G. Towards collaborative robotics in top view surveillance: A framework for multiple object tracking by detection using deep learning. IEEE/CAA J. Autom. Sinica, 2021; 8(7): 1253–1270.
Wu W, Yang T L, Li R, Chen C, Liu T, Zhou K, et al. Detection and enumeration of wheat grains based on a deep learning method under various scenarios and scales. Journal of Integrative Agriculture, 2020; 19: 1998–2008.
Zhang L, Wu L G, Liu Y Q. Hemerocallis citrina Baroni Maturity detection method integrating lightweight neural network and dual attention mechanism. Electronics, 2022; 11(17): 2743.
Hu J, Shen L, Albanie S, Sun G, Wu E H. Squeeze-and-excitation networks. IEEE Trans Pattern Anal. Mach. Intel., 2020; 42: 2011–2023. DOI: 10.48550 /arXiv.1709.01507
Song C Y, Zhang F, Li J S, Xie J Y, Yang C, Zhou H, et al. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model. Journal of Integrative Agriculture, 2023; 22: 1671–1683. DOI: 10.1016/ j.jia.2022.09.021
Sun P, Li S Q, Zhu B, Zuo Z Y, Xia X H. Vision-based fixed-time uncooperative aerial target tracking for UAV. IEEE/CAA J. Autom. Sinica, 2023; 10(5): 1322–1324.
Yang X, Shu L, Chen J N, Ferrag M, Wu J, Nurellari E, et al. A survey on smart agriculture: development modes, technologies, and security and privacy challenges. IEEE/CAA J. Autom. Sinica, 2021; 8: 273–302.
Han K, Wang Y H, Tian Q, Guo J Y, Xu C J, Xu C. Ghost Net: More Features from Cheap Operations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020; pp.1577–1586. DOI: 10.48550/arXiv.1911.11907
Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021; pp.13708–13717. DOI: 10.48550/arXiv.2103.02907
Tan M, Pang R M, Le Q. EfficientDet: Scalable and efficient object detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020; pp.1077–10787. DOI: 10.48550/arXiv.1911.09070
Li G J, Huang X J, Ai J Y, Yi Z R, Xie W. Lemon-YOLO: An efficient object detection method for lemons in the natural environment. IET Image Processing, 2021; 15(9): 1998–2009.
Liu H Y, Duan X H, Chen H N, Lou H T, Deng L X. DBF-YOLO: UAV small targets detection based on shallow feature fusion. IEEJ Transactions on Electrical and Electronic Engineering, 2023; 18(4): 605–612.
Zhang R, Wen C B. SOD-YOLO: A small target defect detection algorithm for wind turbine blades based on improved YOLOv5. Advanced Theory and Simulations, 2022; 5(7): 2100631.
Ganesan G, Chinnappan J. Hybridization of ResNet with YOLO classifier for automated paddy leaf disease recognition: An optimized model. Journal of Field Robotics, 2022; 39(7): 1085–1109.
Junos M, Khairuddin A, Thannirmalai S, Dahari M. An optimized YOLO-based object detection model for crop harvesting system. IET Image Processing, 2021; 15(9): 2112–2125.
Wang X Y, Hu Q, Cheng Y S, Ma J Y. Hyperspectral image super-resolution meets deep learning: A survey and perspective. IEEE/CAA J. Autom. Sinica, 2023; 10(8): 1668–1691.
Liu Z Y, Li Y, Shuang F, Huang Z M, Wang R C. EMB-YOLO: Dataset, method and benchmark for electric meter box defect detection. Journal of King Saud University - Computer and Information Sciences, 2024; Paper ID: 101936. DOI: 10.1016/j.jksuci.2024.101936
Cao Z G, Li J B, Fang L, Li Z Q, Yang H X, Dong G H. Research on efficient classification algorithm for coal and gangue based on improved MobilenetV3-small. International Journal of Coal Preparation and Utilization. 2024 May 20: 1–26. DOI: 10.1080/19392699.2024.2353128
Han D X, Hu H R, Yang J, Liang X L, Ai J M, Abula A, et al. The ideal harvest time for seed production in maize (Zea mays L.) varieties of different maturity groups. Journal of The Science of Food and Agriculture, 2022; 102(13): 5867–5874.
Tan J B, Wan J F, Xia D. Automobile component recognition based on deep learning network with coarse-fine-grained feature fusion. International Journal of Intelligent Systems, 2023; Article ID 1903292, 14 pages. DOI: 10.1155/2023/1903292
Zermas D, Nelson H, Stanitsas P, Morellas V, Mulla D, Papanikolopoulos N. A methodology for the detection of nitrogen deficiency in corn fields using high-resolution RGB imagery. IEEE Transactions on Automation Science and Engineering, 2023; 18(4): 1879–1891.
Wu L G, Zhang L, Shi J H, Zhang Y, Wan J F. Damage detection of grotto murals based on lightweight neural network. Computers and Electrical Engineering, 2022; 102: 108237.
Zhang M C, Hao S, Zhang Y, Yu Y, Zhou M S. Deep learning-based damage detection of mining conveyor belt. Measurement, 2021; 175: 109130.
Okafor E, Mojeed O, Motaz A. Deep reinforcement learning with light-weight vision model for sequential robotic object sorting. Journal of King Saud University - Computer and Information Sciences, 2024; Paper ID: 101896. DOI: 10.1016/j.jksuci.2023.101896
Du W S, Jia Z, Sui S S, Liu P. Table grape inflorescence detection and clamping point localization based on channel pruned YOLOV7-TP. Biosystems Engineering, 2023; 235: 100–115.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.