Enhanced progressive fusion method for the efficient detection of multi-scale lightweight citrus fruits
Abstract
Keywords: citrus fruit detection, enhanced progressive fusion model, multi-scale lightweight, attention mechanism
DOI: 10.25165/j.ijabe.20241706.8802
Citation: Zeng Y L, Lin Y, He Y T, Li T, Li J, Wang B J, et al. Enhanced progressive fusion method for the efficient detection of multi-scale lightweight citrus fruits. Int J Agric & Biol Eng, 2024; 17(6): 218–229.
Keywords
Full Text:
PDFReferences
Liu S Y. Artificial intelligence (AI) in agriculture. IT Professional, 2020; 22(3): 14–15.
Tang Y C, Chen M Y, Wang C L, Luo L F, Li J H, Lian G P, et al. Recognition and localization methods for vision-based fruit picking robots: A review. Frontiers in Plant Science, 2020; 11: 510.
Díaz I, Mazza S M, Combarro E F, Giménez L I, Gaiad J E. Machine learning applied to the prediction of citrus production. Spanish Journal of Agricultural Research, 2017; 15(2). doi: 10.5424/sjar/2017152-9090.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553): 436–444.
Sa I, Ge Z Y, Dayoub F, Upcroft B, Perez T, McCool C. DeepFruits: A fruit detection system using deep neural networks. Sensors, 2016; 16(8): 1222.
Bargoti S, Underwood J. Deep fruit detection in orchards. In: 2017 IEEE international conference on robotics and automation (ICRA), Singapore: IEEE, 2017; pp.3626–3633.
Bargoti S, Underwood J P. Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics, 2017; 34(6): 1039–1060.
Koirala A, Walsh K B, Wang Z, McCarthy C. Deep learning - Method overview and review of use for fruit detection and yield estimation. Computers and Electronics in Agriculture, 2019; 162: 219–234.
Gao F F, Fu L S, Zhang X, Majeed Y, Li R, Karkee M, et al. Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN. Computers and Electronics in Agriculture, 2020; 176: 105634.
Kukreja V, Dhiman P. A Deep Neural Network based disease detection scheme for Citrus fruits. In: 2020 International conference on smart electronics and communication (ICOSEC), Trichy, India: IEEE, 2020; pp.97–101.
Horng G J, Liu M X, Chen C C. The smart image recognition mechanism for crop harvesting system in intelligent agriculture. IEEE Sensors Journal, 2019; 20(5): 2766–2781.
Liu Z S, Xiang X Y, Qin J H, Tan Y, Zhang Q, Xiong N N. Image recognition of citrus diseases based on deep learning. CMC-Computers Materials & Continua, 2021; 66(1): 457–466.
Qiu W J, Ye J, Hu L Q, Yang J, Li Q L, Mo J Y, et al. Distilled-MobileNet Model of convolutional neural network simplified structure for plant disease recognition. Smart Agriculture, 2021; 3(1): 109–117.
Liu Y P, Yang C H, Ling H, Mabu S, Kuremoto T. A visual system of citrus picking robot using convolutional neural networks. In: 2018 5th international conference on systems and informatics (ICSAI), Nanjing, China: IEEE, 2018; pp.344–349.
Lu J, Hu X W. Detecting green citrus fruit on trees in low light and complex background based on MSER and HCA. Transactions of the CSAE, 2017; 33(19): 196–201. (in Chinese)
Bi S, Gao F, Chen J W, Zhang L. Detection method of citrus based on deep convolution neural network. Transactions of the CSAM, 2019; 50(5): 181–186. (in Chinese)
Zhang W L, Wang J Q, Liu Y X, Chen K Z, Li H B, Duan Y L, et al. Deep-learning-based in-field citrus fruit detection and tracking. Horticulture Research, 2022; 9: uhac003.
Zhuang J J, Luo S M, Hou C J, Tang Y, He Y, Xue X Y. Detection of orchard citrus fruits using a monocular machine vision-based method for automatic fruit picking applications. Computers and Electronics in Agriculture, 2018; 152: 64–73.
Lin G C, Tang Y C, Zou X J, Li J H, Xiong J T. In-field citrus detection and localisation based on RGB-D image analysis. Biosystems Engineering, 2019; 186: 34–44.
Chen J Y, Liu H, Zhang Y T, Zhang D K, Ouyang H K, Chen X Y. A multiscale lightweight and efficient model based on YOLOv7: Applied to citrus orchard. Plants, 2022; 11(23): 3260.
Lyu S L, Li R Y, Zhao Y W, Li Z, Fan R J, Liu S Y. Green citrus detection and counting in orchards based on YOLOv5-CS and AI edge system. Sensors, 2022; 22(2): 576.
Yang H W, Liu Y Z, Wang S W, Qu H X, Li N, Wu J, et al. Improved apple fruit target recognition method based on YOLOv7 model. Agriculture, 2023; 13(7): 1278.
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016; pp.779–788.
Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv preprint arXiv: 1804.02767, 2018. doi: 10.48550/arxiv.1804.02767.
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934, 2020. doi: 10.48550/arXiv.2004.10934.
Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada: IEEE, 2023; pp.7464–7475.
Chen J R, Kao S-H, He H, Zhuo W P, Wen S, Lee C-H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada: IEEE, 2023; pp.12021–12031.
Yang G Y, Lei J, Zhu Z K, Cheng S Y, Feng Z L, Liang R H. AFPN: Asymptotic feature pyramid network for object detection. In: 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, Oahu, HI, USA: IEEE, 2023; 2184–2189.
Liu Y C, Shao Z R, Teng Y Y, Hoffmann N. NAM: Normalization-based attention module. arXiv preprint arXiv: 2111.12419, 2021; doi: 10.48550/arXiv.2111.12419.
Woo S, Park J, Lee J-Y, Kweon I S. Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), Munich, Germany: Springer, 2018; doi: 10.1007/978-3-030-01234-2_1.
Wang Q L, Wu B G, Zhu P F, Li P H, Zuo W M, Hu Q H. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2020; pp.11534–11542.
Zheng Z H, Wang P, Liu W, Li J Z, Ye R G, Ren D W. Distance-IoU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence, USA: AAAI Press, 2020; pp.12993–13000. doi: 10.1609/aaai.v34i07.6999.
Tong Z J, Chen Y H, Xu Z W, Yu R. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv preprint arxiv: 2301.10051, doi: 10.48550/arXiv.2301.10051.
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137–1149.
Duan K W, Bai S, Xie L X, Qi H G, Huang Q M, Tian Q. Centernet: Keypoint triplets for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South): IEEE, 2019; 6568–6577.
Ultralytics/yolov5. 2021; Available: https://github.com/ ultralytics/yolov5. Accessed on [2023-04-25].
Ge Z, Liu S T, Wang F, Li Z M, Sun J. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv: 2107.08430, 2021; doi: 10.48550/arXiv.2107.08430.
ultralytics, 2023. Available: https://github.com/ultralytics/ultralytics. Accessed on [2023-04-19].
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.