Comparison of the capacity of biological desulfurization of Thiobacillus ferrooxidans from different sulfur-containing substrates with or without additional ferrous iron
Abstract
Keywords: Thiobacillus ferrooxidans, ferrous iron, sulfur-containing substrate, biological desulfurization
DOI: 10.25165/j.ijabe.20241703.8613
Citation: Wang Y J, Chang X P, Tao H G, Wang Z F, Zhang Q G. Comparison of the capacity of biological desulfurization of Thiobacillus ferrooxidans from different sulfur-containing substrates with or without additional ferrous iron. Int J Agric & Biol Eng, 2024; 17(3): 140-143.
Keywords
Full Text:
PDFReferences
Pourzolfaghar H, Ismail M H S, Izhar S. Review of H2S sorbents at low-temperature desulfurization of biogas. International Journal of Chemical and Environmental Engineering, 2014; 5: 22–28.
Rattanapan C, Kantachote D, Yan R, Boonsawang P. Hydrogen sulfide removal using granular activated carbon biofiltration inoculated with Alcaligenes faecalis T307 isolated from concentrated latex wastewater. International Biodeterioration & Biodegradation, 2010; 64(5): 383–387.
Zhou Y, Feng L, Kou W, Shao L J, Liu P H, Zhai J N, et al. Microaerobic desulfurization in the semi-dry fermentation of cow manure. Journal of Biobased Materials and Bioenergy, 2019; 13: 62–68.
Lan Thao Ngo T N, Chiang KY. Hydrogen sulfide removal from simulated synthesis gas using a hot gas cleaning system. Journal of Environmental Chemical Engineering, 2023; 11(2): 109592.
Azizi S M M, Zakaria B S, Haffiez N, Niknejad P, Dhar B R. A critical review of prospects and operational challenges of microaeration and iron dosing for in-situ biogas desulfurization. Bioresource Technology Reports, 2022; 20: 101265.
Rocher-Rivas R, González-Sánchez A, Ulloa-Mercado G, Muñoz R, Quijano G. Biogas desulfurization and calorific value enhancement in compact H2S/CO2 absorption units coupled to a photobioreactor. Journal of Environmental Chemical Engineering, 2022; 10(5): 108336.
Bachmann R T, Johnson A C, Edyvean R G J. Biotechnology in the petroleum industry: An overview. International Biodeterioration & Biodegradation, 2014(86): 225–237.
Pagella C, Perego P, Zilli M. Biotechnological H2S gas treatment with Thiobacillus ferrooxidans. Chemical Engineering & Technology, 1996; 19: 79–88.
Kamde K, Pandey R A, Thul S T, Dahake R, Shinde V M, Bansiwal A. Microbially assisted arsenic removal using Acidothiobacillus ferrooxidans mediated by iron oxidation. Environmental Technology & Innovation, 2018; 10: 78–90.
Sampsom M I, Phillips C V, Blake R C. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Minerals Engineering, 2000; 13(4): 373–389.
Johnson D B, Holmes D S, Vergara E, Holanda R, Pakostova E. Sulfoacidibacillus ferrooxidans, gen. nov., sp. nov., Sulfoacidibacillus thermotolerans, gen. nov., sp. nov., and Ferroacidibacillus organovorans, gen. nov., sp. nov.: Extremely acidophilic chemolitho-heterotrophic Firmicutes. Research in Microbiology, 2023; 174(3): 104008.
Jin D C, Wang X M, Liu L L, Liang J R, Zhou L X. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. Journal of Hazardous Materials, 2020; 400: 123108.
Valdés J, Pedroso I, Quatrini R, Dodson R J, Tettelin H, Blake II R, et al. Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genomics, 2008; 9: 597–609.
Rawlings D E. Bioleaching, the improvement of bioleaching organisms and the molecular biology of Thiobacillus ferrooxidans. International Biodeterioration & Biodegradation, 1996; 37(1–2): 133.
Azhdarpoor A, Hoseini R, Dehghani M. Removal of heavy metals from urban sewage sludge using acidophilic Thiobacillus ferrooxidans. Journal of Health, 2019; 10(2): 169–178.
Saavedra A, Aguirre P, Gentina J C. Climbing the hill: The implications of a two-step adaptation on biooxidation of ferrous ion at high total iron concentrations by At. Ferrooxidans. Hydrometallurgy, 2020; 197: 105486.
Santaolalla A, Gutierrez J, Gallastegui G, Barona A, Rojo N. Immobilization of Acidithiobacillus ferrooxidans in bacterial cellulose for a more sustainable bioleaching process. Journal of Environmental Chemical Engineering, 2021; 9(4): 105283.
Kamde K, Pandey R A, Thul S, Bansiwal A. Removal of arsenic by Acidothiobacillus ferrooxidans bacteria in bench scale fixed-bed bioreactor system. Chemistry and Ecology; 2018; 34(9): 818–838.
Ravindra P, Kodli B, Veera Rao V P R. Effect of adaptation of Acidothiobacillus ferrooxidans on ferrous oxidation and nickel leaching efficiency. Advances in Bioprocess Technology, 2015; 17–26.
Shang H, Wen J-K, Wu B, Chen B W. The study of Thiobacillus ferrooxidans on desulfurization of high sulfur coal from Shanxi province. Advanced Materials and Energy Sustainability, 2017; 521–527.
Yang Y-K, Chen S, Yang D-S, Zhang W, Wang H J, Zeng R J. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor. Science of The Total Environment, 2019; 686: 869–877.
Martin F S, Kracht W, Vargas T, Rudolph M. Mechanisms of pyrite biodepression with Acidithiobacillus ferrooxidans in seawater flotation. Minerals Engineering, 2020; 145: 106067.
He J T, Cai Z L, Zhang Y M, Xue N N, Wang X J, Zheng Q S. Effects of energy source on bioleaching of vanadium-bearing shale by Acidithiobacillus ferrooxidans. Biochemical Engineering Journal, 2019; 151(15): 107355.
Ohmura N, Sasaki K, Matsumoto N, Saiki H. Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. Journal of Bacteriology, 2002; 184(8): 2081–2087.
Malhotra S, Tankhiwale A S, Rajvaidya A S, Pandey R A. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillusferrooxidans. Bioresource Technology, 2005; 85(3): 225–234.
Sharma P K, Das A, Rao K H, Forssberg K S E. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy, 2003; 71(1-2): 285–292.
Jung H, Inaba Y, Banta S. Genetic engineering of the acidophilic, chemolithoautotroph Acidithiobacillus ferrooxidans. Trends in Biotechnology, 2022; 40(6): 677–692.
Lin W M, Huang H, Ma F. Analysis of the removal mechanism of ferroalloy by Acidithiobacillus Ferrooxidans. Procedia CIRP, 2022; 110: 14–19.
Zhou J K, Qin W Q, Niu Y J, Li H X. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized on activated carbon. Transactions of Nonferrous Metals Society of China, 2006; 16(4): 927–930.
State Environmental Protection Administration. Water and wastewater analysis monitoring and analysis method (4th Edition). Beijing: China Environmental Science Press. 2002; 448p. (in Chinese)
Zhang H T, Lu Y Q, Sun S Z, Zhuang L, Chen S J, Xu Y Y et al. Testing of non-metallic inorganic substances. In: Zhang H T, Lu Y Q, Sun S Z, Zhuang L, Chen S J, Xu Y Y, et al. (Ed. ). Complete Works of Water Quality Analysis. Chongqin: Science and Technology Literature Press Chongqing Branch. 1989; pp.164–168. (in Chinese)
Curutchet G, Donati E. Iron-oxidizing and leaching activities of sulphur-grown Thiobacillus ferrooxidans cells on other substrates: Effect of culture pH. Journal of Bioscience and Bioengineering, 2000; 90: 57–61.
Zheng X F, Xia J L, Liu H C, Nie Z Y, Qin C Q, Wang Y, et al. The differential effect of amorphous μ-S and orthorhombic ɑ-S8 on chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Minerals Engineering, 2022; 184: 107660.
Gong L. Study on the technology and theory of treatment of hydrogen sulphide by biocatalytic oxidation process. PhD dissertation. Kunming: Kunming University of Science and Technology, 2005; 222p.
Qin S Y, Liu X L, Lu M, Li D Y, Feng X, Zhao L X. Acidithiobacillus ferrooxidans and mixed Acidophilic microbiota oxidation to remove sulphur impurity from iron concentrate. Biochemical Engineering Journal, 2022; 187: 108647.
Harahuc L, Lizama H M, Suzuki I. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 2000; 66(3): 2000.
Farías R, Norambuena J, Ferrer A, Camejo P, Zapata C, Chávez R, et al. Redox stress response and UV tolerance in the acidophilic iron-oxidizing bacteria Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Research in Microbiology, 2021; 172(3): 103833.
Ahmad M, Yousaf M, Cai W W, Zhao Z-P. Enhanced H2S removal from diverse fuels by a coupled absorption and biological process uses CO2 as carbon resource for microbial ecosystem. Separation and Purification Technology, 2023; 310: 123182.
Li W B, Feng Q Y, Li Z, Jin T, Zhang Y, Southam G. Inhibition of iron oxidation in Acidithiobacillus ferrooxidans by low-molecular-weight organic acids: evaluation of performance and elucidation of mechanisms. Science of The Total Environment, 2024; 927: 171919.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.