Cow-YOLO: Automatic cow mounting detection based on non-local CSPDarknet53 and multiscale neck
Abstract
Keywords: cows mounting, automatic detection, Cow-YOLO, computer vision, CSPDarknet53, multiscale neck
DOI: 10.25165/j.ijabe.20241703.8153
Citation: Li D, Wang J H, Zhang Z, Dai B S, Zhao K X, Shen W Z, et al.Cow-YOLO: Automatic cow mounting detection based on non-local CSPDarknet53 and multiscale neck. Int J Agric & Biol Eng, 2024; 17(3): 193-202.
Keywords
Full Text:
PDFReferences
Higaki S, Okada H, Suzuki C, Sakurai R, Suda T, Yoshioka K. Estrus detection in tie-stall housed cows through supervised machine learning using a multimodal tail-attached device. Computers and Electronics in Agriculture, 2021; 191: 106513.
Reith S, Hoy S. Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle. Animal, 2018; 12(2): 398–407.
Perez Marquez H J, Ambrose D J, Bench C J. Behavioral changes to detect estrus using ear-sensor accelerometer compared to in-line milk progesterone in a commercial dairy herd. Frontiers in Animal Science, 2023; 4: 1149085.
Mičiaková M, Strapák P, Strapáková E. The influence of selected factors on changes in locomotion activity during estrus in dairy cows. Animals, 2024; 14(10): 1421.
Wang J, Bell M, Liu X H, Liu G. Machine-learning techniques can enhance dairy cow estrus detection using location and acceleration data. Animals, 2020; 10(7): 1160.
Tsai D M, Huang C Y. A motion and image analysis method for automatic detection of estrus and mating behavior in cattle. Computers and electronics in agriculture, 2014; 104: 25–31.
Wang S H, He D J, Liu D. Automatic Recognition Method of Dairy Cow Estrus Behavior Based on Machine Vision. Transactions of the Chinese Society for Agricultural Machinery, 2020; 51(4): 241–249. (in Chinese)
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutionnal neural networks. Communications of the ACM, 2017; 60(6): 84–90.
Lodkaew T, Pasupa K, Loo C K. CowXNet: An automated cow estrus detection system. Expert Systems with Applications, 2023; 211: 118550.
Chae J-w, Cho H-c. Identifying the mating posture of cattle using deep learning-based object detection with networks of various settings. Journal of Electrical Engineering & Technology, 2021; 16: 1685–1692.
Redmon J, Farhadi A. Yolov3: An incremental improvement. Computer Science, 2018; In press. doi: 10.48550/arXiv.1804.02767.
Wang S H, He D J. Estrus behavior recognition of dairy cows based on improved YOLOv3 model. Transactions of the CSAE, 2021; 52(7): 141–150.
Cao Y, Xu J R, Lin S, Wei F Y, Hu H. GCNet: Non-local networks meet squeeze-excitation networks and beyond. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South): IEEE, 2019; doi: 10.1109/ICCVW.2019.00246.
Liu Z, Lin Y T, Cao Y, Hu H, Wei Y X, Zhang Z, et al. Swin transformer: Hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada: IEEE, 2021; pp.9992–10002. doi: 10.1109/ICCV48922.2021.00986.
Jocher G. v6.0 - YOLOv5n ‘Nano’ models, Roboflow integration, TensorFlow export, OpenCV DNN support. 2021; Available: https://github.com/ultralytics/yol-ov5/releases/tag/v6.0. Accessed on [2023-10-20].
Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA: IEEE, 2021; pp.13708–13717. doi: 10.1109/CVPR46437.2021.01350.
Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 2010; 88: 303–338.
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection. Computer Science, 2020; doi: 10.48550/arXiv.2004.10934.
Liu S, Qi L, Qin H F, Shi J P, Jia J Y. Path aggregation network for instance segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018; pp.8759–8768.
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016; pp.779–788. doi: 10.1109/CVPR.2016.91.
Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE, 2017; pp.6517–6525. doi: 10.1109/CVPR.2017.690.
Tan M X, Pang R M, Le Q V. Efficientdet: Scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2020; pp.10778–10787.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Computer Science, 2014; In press. doi: 10.48550/arXiv.1409.1556.
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016; pp.770–778.
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. Computer Science, 2017; In press. doi: 10.48550/arXiv.1704.04861.
Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018; pp.4510–4520. doi: 10.1109/CVPR.2018.00474.
Tan M X, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. Inter-national conference on machine learning. PMLR, 2019; 97: 6105–6114.
Hu J, Shen L, Albanie S, Sun G, Wu E H. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018; 42(8): 2011–2023.
Woo S, Park J, Lee J-Y, Kweon I S. Cbam: Convolutional block attention module. In: Computer Vision - ECCV 2018, Springer, 2018; pp.3–19. doi: 10.1007/978-3-030-01234-2_1.
Wang X L, Girshick R, Gupta A, He K M. Non-local neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018; pp.7794–7803. doi: 10.1109/CVPR.2018.00813.
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv: 2010.11929, 2020; In press. doi: 10.48550/arXiv.2010.11929.
Lin T-Y, Dollár P, Girshick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE, 2017; pp.936–944. doi: 10.1109/CVPR.2017.106.
He K M, Zhang X Y, Ren S Q, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015; 37(9): 1904–1916.
Zhu X K, Lyu S C, Wang X, Zhao Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada: IEEE, 2021; pp.2778–2788.
Neubeck A, Van Gool L. Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China: IEEE, 2006; pp.850–855.
Bodla N, Singh B, Chellapp.R, Davis L S. Soft-NMS - improving object detection with one line of code. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy: IEEE, 2017; 5562–5570.
Solovyev R, Wang W, Gabruseva T. Weighted boxes fusion: Ensembling boxes from different object detection models. Image and Vision Computing, 2021; 107: 104117.
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: Common objects in context. Computer Vision - ECCV 2014, Springer, 2014; pp.740–755. doi: 10.1007/978-3-319-10602-1_48.
Girshick R. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015; pp.1440–1448. doi: 10.1109/ICCV.2015.169.
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137–1149.
He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017; pp.2980–2988. doi: 10.1109/ICCV.2017.322.
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. Ssd: Single shot multibox detector. In: Computer Vision - ECCV 2016, Springer, 2016; pp.21–37. doi: 10.1007/978-3-319-46448-0_2.
Ge Z, Liu S T, Wang F, Li Z M, Sun J. Yolox: Exceeding yolo series in 2021. arXiv: 2107.08430, 2021; In press. doi:10.48550/arXiv.2107.08430
Lin T-Y, Goyal P, Girshick R, He K M, Dollár P. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 42(2): 318–327.
Liu Z C, He D J. Recognition method of cow estrus behavior based on convolutional neural network. Transactions of the Chinese Society for Agricultural Machinery, 2019; 50(7): 186–193. (in Chinese)
Guo Y Y, Zhang Z R, He D J, Niu J Y, Tan Y. Detection of cow mounting behavior using region geometry and optical flow characteristics. Computers and Electronics in Agriculture, 2019; 163: 104828.
Noe S M, Zin T T, Tin P, Hama H. Detection of estrus in cattle by using image technology and machine learning methods. In: 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe, Japan: IEEE, 2020; pp.320–321. doi: 10.1109/GCCE50665.2020.9291987.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.