Method for the multi-view estimation of fish mass using a two-stage neural network with edge-sensitive module
Abstract
Keywords: fish mass, multi-view estimation, two-stage neural network, edge-sensitive module, image segmentation
DOI: 10.25165/j.ijabe.20241703.6840
Citation: Jiao Z Y, Cai Y J, Zhang Q, Zhong Z Y. Method for the multi-view estimation of fish mass using a two-stage neural network with edge-sensitive module. Int J Agric & Biol Eng, 2024; 17(3): 222-229.
Keywords
Full Text:
PDFReferences
Zhao J, Bao W J, Zhang F D, Ye Z Y, Liu Y, Shen M W, et al. Assessing appetite of the swimming fish based on spontaneous collective behaviors in a recirculating aquaculture system. Aquacultural Engineering, 2017; 78(PartB): 196–204.
Zion B. The use of computer vision technologies in aquaculture - A review. Computers and Electronics in Agriculture, 2012; 88: 125–132.
Zhang L, Wang J P, Duan Q L. Estimation for fish mass using image analysis and neural network. Computers and Electronics in Agriculture, 2020; 173: 105439.
Fulton T W. The rate of growth of fishes. Twenty-second Annual Report, 1904; 3(3): 326–446.
Sanchez-Torres G, Ceballos-Arroyo A, Robles-Serrano S. Automatic measurement of fish weight and size by processing underwater hatchery images. Engineering Letters, 2018; 26(4): 461–472.
Froese R, Tsikliras A C, Stergiou K I. Editorial note on weight-length relations of fishes. Acta Ichthyologica et Piscatoria, 2011; 41(4): 261–263
Froese R, Thorson J T, Reyes R B. A Bayesian approach for estimating length-weight relationships in fishes. Journal of Applied Ichthyology, 2013; 30(1): 78–85.
Venerus L A, Villanueva Gomila G L, Sueiro M C, Bovcon N D. Length-weight relationships for two abundant rocky reef fishes from northern Patagonia, Argentina: Sebastes oculatus Valenciennes, 1833 and Pinguipes brasilianus Cuvier, 1829. Journal of Applied Ichthyology, 2016; 32(6): 1347–1349.
Hufschmied P, Fankhauser T, Pugovkin D. Automatic stress-free sorting of sturgeons inside culture tanks using image processing. Journal of Applied Ichthyology, 2011; 27(2): 622–626.
Gümüş B, Balaban M O. Prediction of the weight of aquacultured rainbow trout (Oncorhynchus mykiss) by image analysis. Journal of Aquatic Food Product Technology, 2010; 19(3-4): 227–237.
Al-Jubouri Q, Al-Nuaimy W, Al-Taee M, Young I. An automated vision system for measurement of zebrafish length using low-cost orthogonal web cameras. Aquacultural Engineering, 2017; 78(PartB): 155–162.
Miranda J M, Romero M. A prototype to measure rainbow trout’s length using image processing. Aquacultural Engineering, 2017; 76: 41–49.
Viazzi V, Van Hoestenberghe S, Goddeeris B M, Berckmans D. Automatic mass estimation of Jade perch Scortum barcoo by computer vision. Aquacultural Engineering, 2015; 64: 42–48.
Saberioon M, Císař P. Automated within tank fish mass estimation using infrared reflection system. Computers and Electronics in Agriculture, 2018; 150: 484–492.
de Verdal H, Vandeputte M, Pepey E, Vidal M-O, Chatain B. Individual growth monitoring of European sea bass larvae by image analysis and microsatellite genotyping. Aquaculture, 2014; 434: 470–475.
Ault J S, Luo J G, A reliable game fish weight estimation model for atlantic tarpon (Megalops atlanticus). Fisheries Research, 2013; 139: 110–117.
Costa C, Antonucci F, Boglione C, Menesatti P, Vandeputte M, Chatain B. Automated sorting for size, sex and skeletal anomalies of cultured seabass using external shape analysis. Aquacultural Engineering, 2013; 52: 58–64.
Balaban M O, Chombeau M, Gümüş B, Cirban D. Determination of volume of alaska pollock (Theragra chalcogramma) by image analysis. Journal of Aquatic Food Product Technology, 2011; 20(1): 45–52.
Wang W J, Xu J Y, Lyu Z M, Xin N H. Weight estimation of underwater Cynoglossus semilaevis based on machine vision. Transactions of the CSAE, 2012; 28(16): 153–157. (in Chinese)
Odone F, Trucco E, Verri A. A trainable system for grading fish from images. Applied Artificial Intelligence, 2001; 15(8): 735–745.
He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision, 2017; pp.2961–2969.
Whitted T. An improved illumination model for shaded display. In: Proceedings of the 6th annual conference on Computer Graphics and Interactive Techniques, 1979; 13(2): 807419.
Kirillov A, Wu Y X, He K M, Girshick R. Pointrend: Image Segmentation as Rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020; pp.9799–9808.
Lin T Y, Dollár P, Girshick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017; Honolulu: 2117–2125.
Toussaint G T. Solving geometric problems with the rotating calipers. In: Proceeding of IEEE Melecon’83, Athens: IEEE, 1983; 8p.
Kůrková V. Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 1992; 5(3): 501–506.
Konovalov D A, Saleh A, Efremova D B, Domingos J A, Jerry D R. Automatic weight estimation of harvested fish from images. In: 2019 Digital Image Computing: Techniques and Applications (DICTA), Peth: IEEE, 2019; pp.1–7.
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami: IEEE, 2009; pp.248–255.
Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. Microsoft CoCo: Common objects in context. In: European Conference on Computer Vision (ECCV 2014), Springer, 2014; pp.740–755.
Hoiem S K, Divvala J H. Hays, Pascal VOC 2008 challenge. In: PASCAL Challenge Workshop in ECCV, Citeseer, 2009.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.