Separation-enrichment method for airborne disease spores based on microfluidic chip
Abstract
Keywords: greenhouse, crop disease, airborne spore, microfluidic chip
DOI: 10.25165/j.ijabe.20211405.6375
Citation: Wang Y F, Zhang X D, Yang N, Ma G X, Du X X, Mao H P. Separation-enrichment method for airborne disease spores based on microfluidic chip. Int J Agric & Biol Eng, 2021; 14(5): 199–205.
Keywords
Full Text:
PDFReferences
Wang T Y, Wu G X, Chen J W, Cui P, Chen Z X, Yan Y Y, et al. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renewable & Sustainable Energy Reviews, 2017; 70: 1178–1188.
Wang Y F, Ma G X, Du X X, Liu Y, Wang B, Xu G L, Mao H P. Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber. Agronomy, 2020; 10(12): 1921. doi: 10.3390/agronomy10121921.
Hafez Y M, Attia K A, Kamel S, Alamery S F, El-Gendy S, Al-Doss A A, et al. Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiological and Molecular Plant Pathology, 2020; 111: 101489. doi: 10.1016/ j.pmpp.2020.101489.
Tanaka K, Fukuda M, Amaki Y, Sakaguchi T, Inai K, Ishihara A, et al. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Pest management science, 2017; 73: 2419–2428.
Wallace E C, D’Arcangelo K N, Quesada-Ocampo L M. Population analyses reveal two host-adapted clades of Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew, on commercial and wild cucurbits. Phytopathology, 2020; 110(9): 1578–1587.
Akhmadeev A A, Salakhov M K. A new approach of recognition of ellipsoidal micro- and nanoparticles on AFM images and determination of their sizes. Measurement Science and Technology, 2016; 27(10): 105402. doi: 10.1088/0957-0233/27/10/105402.
Lei Y, Yao Z F, He D J. Automatic detection and counting of urediniospores of Puccinia striiformis f. sp. tritici using spore traps and image processing. Scientific reports, 2018; 8:13647. doi: 10.1038/ s41598-018-31899-0.
Chan B D, Icoz K, Huang W F, Chang C L, Savran C A. On-demand weighing of single dry biological particles over a 5-order-of-magnitude dynamic range. Lab on a Chip, 2014; 14(21): 4188–4196.
Sireesha Y, Velazhahan R. Rapid and specific detection of Peronosclerospora sorghi in maize seeds by conventional and real-time PCR. European Journal of Plant Pathology, 2018; 150(2): 521–526.
Bandamaravuri K B, Nayak A K, Bandamaravuri A S, Samad A. Simultaneous detection of downy mildew and powdery mildew pathogens on Cucumis sativus and other cucurbits using duplex-qPCR and HRM analysis. AMB Express, 2020; 10(1): 135. doi: 10.1186/s13568-020- 01071-x.
Wada M, Tsukada M, Namiki N, Szymanski W W, Noda N, Makino H, et al. A two-stage virtual impactor for in-stack sampling of PM2.5 and PM10 in flue gas of stationary sources. Aerosol and Air Quality Research, 2016; 16(1): 36–45.
Djoumi L, Vanotti M, Blondeau-Patissier V. Real time cascade impactor based on surface acoustic wave delay lines for PM10 and PM2.5 mass concentration measurement. Sensors, 2018; 18(1): 255. doi: 10.3390/ s18010255.
Siani O Z, Targhi M Z, Sojoodi M, Movahedin M. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization. Bioprocess and Biosystems Engineering, 2020; 43(9):1573–1586.
Wang P, Yuan S Q, Yang N, Wang A Y, Fordjour A, Chen S B. The Collection method for crop fungal spores based on an efficient microfluidic device. Aerosol and Air Quality Research, 2020; 20(1): 72–79.
Yang N, Chen C Y, Li T, Li Z, Zou L R, Zhang R B, et al. Portable rice disease spores capture and detection method using diffraction fingerprints on microfluidic chip. Micromachines, 2019; 10(5): 289. doi: 10.3390/ mi10050289.
Ren Q L, Liang C X, Wang Z X, Qu Z G. Continuous trapping of bacteria in non-Newtonian blood flow using negative dielectrophoresis with quadrupole electrodes. Journal of Physics D-applied Physics, 2021; 54(1): 015401. doi: 10.1088/1361-6463/abb726.
Abd Rahman N, Ibrahim F, Yafouz B. Dielectrophoresis for biomedical sciences applications: A review. Sensors, 2017; 17(3): 449. doi: 10.3390/s17030449.
Ettehad H M, Zarrin P S, Holzel R, Wenger C. Dielectrophoretic immobilization of yeast cells using CMOS integrated microfluidics. micromachines, 2020; 11(5): 501. doi: 10.3390/mi11050501.
Zhang Y L, Chen X Y. Blood cells separation microfluidic chip based on dielectrophoretic force. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020; 42(4): 206. doi: 10.1007/s40430-020- 02284-8.
Zhang Y, Wang S Y, Chen J, Yang F, Li G Y. Separation of macrophages using a dielectrophoresis-based microfluidic device. Biochip Journal, 2020; 14(2): 185–194.
Lee K, Lee J, Ha D, Kim M, Kim T. Low-electric-potential-assisted diffusiophoresis for continuous separation of nanoparticles on a chip. Lab
on a Chip, 2020; 20(15): 2735–2747.
Tajik P, Saidi M S, Kashaninejad N, Nguyen N T. Simple, cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles. Industrial & Engineering Chemistry Research, 2020; 59(9): 3772–3783.
Natu R, Martinez-Duarte R. Numerical model of streaming DEP for stem cell sorting. Micromachines, 2016; 7(12): 217. doi: 10.3390/mi7120217.
Ayala-Mar S, Perez-Gonzalez V H, Mata-Gomez M A, Gallo-Villanueva R C, Gonzalez-Valdez J. Electrokinetically driven exosome separation and concentration using dielectrophoretic-enhanced PDMS-based microfluidics. Analytical Chemistry, 2019; 91(23): 14975–14982.
Hirota Y, Hakoda M, Wakizaka Y. Separation characteristics of animal cells using a dielectrophoretic filter. Bioprocess and Biosystems Engineering, 2010; 33(5): 607–612.
Han S I, Huang C, Han A. In-droplet cell separation based on bipolar dielectrophoretic response to facilitate cellular droplet assays. Lab on a Chip, 2020; 20(20): 3832–3841.
Gascoyne P R C, Shim S, Noshari J, Becker F F, Stemke-Hale K. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Electrophoresis, 2013; 34(7): 1042–1050.
Chen L, Liu X, Zheng X L, Zhang X L, Yang J, Tian T, et al. Dielectrophoretic separation of particles using microfluidic chip with composite three-dimensional electrode. Micromachines, 2020; 11(7): 700. doi: 10.3390/mi11070700.
Alnaimat F, Mathew B, Hilal-Alnaqbi A. Modeling a dielectrophoretic microfluidic device with vertical interdigitated transducer electrodes for separation of microparticles based on size. Micromachines, 2020; 11(6): 563. doi: 10.3390/mi11060563.
Zhang Z L, Luo Y, Nie X F, Yu D L, Xing X X. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation. Analyst, 2020; 145(16): 5603–5614.
Wang Y F, Du X X, Ma G X, Liu Y, Wang B, Mao H P. Classification methods for airborne disease spores from greenhouse crops based on multifeature fusion. Applied Science, 2020; 10(21): 7850. doi: 10.3390/ app10217850.
Zhu Y D, Zhang J Y, Li M Y, Zhao L J, Ren H R, Yan L G, et al. Rapid determination of spore germinability of Clostridium perfringens based on microscopic hyperspectral imaging technology and chemometrics. Journal of Food Engineering, 2020; 280: 109896. doi: 10.1016/ j.foodeng.2019.109896.
Xu P F, Zhang R B, Yang N, Oppong P K, Sun J. High-precision extraction and concentration detection of airborne disease microorganisms based on microfluidic chip. Biomicrofluidics, 2019; 13(2): 024110. doi: 10.1063/1.5086087.
Tian E Z, Xia F X, Wu J D, Zhang Y P, Li J, Wang H, et al. Electrostatic air filtration by multifunctional dielectric heterocaking filters with ultralow pressure drop. Acs Applied Materials & Interfaces, 2020; 12(26): 29383–29392.
Shi L Y, Shi X M, Zhou T, Liu Z Y, Liu Z Y, Joo S. A full-scale computational study on the electrodynamics of a rigid particle in an optically induced dielectrophoresis chip. Modern Physics Letters B, 2020; 34(22): 2050233. doi: 10.1142/S0217984920502334.
Ho M T, Li J, Su W, Wu L, Borg M K, Li Z H, et al. Rarefied flow separation in microchannel with bends. Journal of Fluid Mechanics, 2020; 901: A26. doi: 10.1017/jfm.2020.585.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.