Comparison and rapid prediction of lignocellulose and organic elements of a wide variety of rice straw based on near infrared spectroscopy
Abstract
Keywords: rice straw, near infrared reflectance spectroscopy models, rapid prediction, competitive adaptive reweighted sampling, partial least-squares, lignocellulose
DOI: 10.25165/j.ijabe.20191202.4374
Citation: Diallo A A, Yang Z L, Shen G H, Ge J Y, Li Z C, Han L J. Comparison and rapid prediction of lignocellulose and organic elements of a wide variety of rice straw based on near infrared spectroscopy. Int J Agric & Biol Eng, 2019; 12(2): 166–172.
Keywords
Full Text:
PDFReferences
Abraham A, Mathew A K, Sindhu R, Pandey A, Binod P. Potential of rice straw for bio-refining: An overview. Bioresour Technol., 2016; 215: 29–36. doi: org/10.1016/j.biortech.2016.04.011
Jin S Y, Chen H Z. Near-infrared analysis of the chemical composition of rice straw. Ind Crop Prod., 2007; 26(2): 207–211. doi: 10.1016/ j.indcrop.2007.03.004
Huang C, Han L, Yang Z, Liu X. Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manage., 2009; 29(6): 1793–1797. doi: 10.1016/j.wasman.2008.11.027
Huang C, Han L J, Liu X, Ma L. The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy. Energ Source Part A., 2010; 33(2): 114–120. doi: org /10.1080/15567030902937127
Hattori T, Murakami S, Mukai M, Yamada T, Hirochika H, Ike M, et al. Rapid analysis of transgenic rice straw using near-infrared spectroscopy. Plant Biotechnol-Nar., 2012; 29: 359–366. doi: org/10.5511/plantbiotech- nology.12.0501a
Sluiter J B, Ruiz R O, Scarlata C J, Sluiter A D, Templeton D W. Compositional analysis of lignocellulosic feedstocks. 1. Review and Description of Methods. J Agric Food Chem., 2010; 58: 9043–9053. doi: 10.1021/jf1008023
Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharmaceut Biomed., 2007; 44: 683–700. doi: org/10. 1016/j.jpba.2007.03.023
Huang C J, Han L J, Yang Z L, Liu X. Prediction of heating value of straw by proximate data, and near infrared spectroscopy. Energ Convers Manage., 2008; 49(12): 3433–3438. doi: 10.1016/j.enconman.2008. 08.020
Belal E B. Bioethanol production from rice straw residues. Braz J Microbiol., 2013; 44: 225–234. doi: 10.1590/S1517-83822013000100033
Liao C P, Wu C Z, Yany Y J, Huang H T. Chemical elemental characteristics of biomass fuels in China. Biomass Bioenerg., 2004; 27(2): 119–130. doi: 10.1016/j.biombioe.2004.01.002
Banta S, Mendoza C. Organic Matter and Rice. Manila, Philippines: International Rice Research Institute, 1984.
Garivait S, Chaiyo U, Patumsawad S, Deakhuntod J. Physical and chemical properties of thai biomass fuels from agricultural residues. The 2nd Joint International Conference on Sustainable Energy and Environment. 2006; 1–23.
Stahl R, Ramadan A B. Fuels and chemicals from rice straw in Egypt. Forschungszentrum Karlsruhe, FZKA-7361, 2007. doi: 10.5445/IR/2700 69896
Niu W J, Huang G Q, Liu X, Chen L J, Han L J. Chemical composition and calorific value prediction of wheat straw at different maturity stages using near-infrared reflectance spectroscopy. Energ Fuel., 2014; 28(12): 7474–7482. doi: 10.1021/ef501446r
Lande S, Riel S V, Høibø O A, Schneider M H. Development of chemometric models based on near infrared spectroscopy and thermogravimetric analysis for predicting the treatment level of furfurylated Scots pine. Wood Sci Technol., 2010; 44(2): 189–203. doi: org/10.1007/s00226-009-0278-x
Sun B L, Liu J L, Liu S J, Yang Q. Application of FT-NIR-DR and FT-IR-ATR spectroscopy to estimate the chemical composition of bamboo (Neosinocalamus affinis Keng). Holzforschung, 2011; 65(5): 689–696. doi: org/10.1515/hf.2011.075
He W M, Hu H R. Prediction of hot-water-soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy. Bioresour Technol., 2013; 140: 299–305. doi: org/10.1016 /j.biortech. 2013.04.115
Wójciak A, Kasprzyk H, Sikorska E, Krawczyk A, Sikorski M, Wesełucha-Birczyńska A. FT-Raman, FT-infrared and NIR spectroscopic characterization of oxygen-delignified kraft pulp treated with hydrogen peroxide under acidic and alkaline conditions. Vib Spectrosc., 2014; 71:
–69. doi: org/10.1016/j.vibspec.2014.01.007
Li X L, Sun C J, Zhou B X, He Y. Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy. Sci Rep., 2015; 5: 17210. doi: org/10.1038/srep17210
Workman J, Weyer L. Practical guide to interpretive near-infrared spectroscopy. Boca Raton, FL, USA: CRC Press, Inc.2007.
Urbano-Cuadrado M, Castro L D, Pérez-Juan P M, García-Olmo J, Gómez-Nieto M A. Near infrared reflectance spectroscopy and multivariate analysis in enology: determination or screening of fifteen parameters in different types of wines. Anal Chim Acta, 2004; 527: 81–88. doi: org/10.1016/j.aca.2004.07.057
Li J, Tian X H, Wang S X, Ba Y L, Li Y B, Zheng X F. Effects of nitrogen fertilizer reduction on crop yields,soil nitrate nitrogen and carbon contents with straw returning. Journal of Northwest A & F University: Natural Science Edition, 2014; 42: 137–143. (in Chinese)
Xia L L, Xia Y Q, Ma S T, Wang J Y, Wang S W, Zhou W, et al. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences, 2016; 13(15): 4569–4579. doi: org/10.5194/ bg-13-4569-2016
Valdez-Vazquez I, Torres-Aguirre G J, Molina C, Ruiz-Aguilar G M L. Characterization of a lignocellulolytic consortium and methane production from untreated wheat straw: Dependence on nitrogen and phosphorous content. BioResources, 2016; 11(2): 4237–4251. doi: 10.15376/biores. 11.2.4237-4251
Copyright (c) 2019 International Journal of Agricultural and Biological Engineering