Effects of different pulsed vacuum drying strategies on drying kinetics, phenolic composition, and antioxidant capacity of chrysanthemum (Imperial chrysanthemum)
Abstract
Keywords: pulsed vacuum drying, drying kinetics, chlorogenic acid, luteolin, antioxidant capacity
DOI: 10.25165/j.ijabe.20221504.7359
Citation: Xu H H, Wu M, Zhang T, Gao F, Zheng Z A, Li Y. Effects of different pulsed vacuum drying strategies on drying kinetics, phenolic composition, and antioxidant capacity of chrysanthemum (Imperial chrysanthemum). Int J Agric & Biol Eng, 2022; 15(4): 236–242.
Keywords
Full Text:
PDFReferences
Yang P F, Yang Y N, He C Y, Chen Z F, Yuan Q S, Zhao S C, et al. New caffeoylquinic acid derivatives and flavanone glycoside from the flowers of chrysanthemum morifolium and their bioactivities. Molecules, 2019; 24(5): 850. doi: 10.3390/molecules24050850.
Sun H, Zhang T, Fan Q, Qi X, Zhang F, Fang W, et al. Identification of floral scent in chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry. Molecules, 2015; 20(4): 5346–5359.
Chua L Y W, Chua B L, Figiel A, Chong C H, Wojdylo A, Szumny A, et al. Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules, 2019; 24(8): 1625. doi: 10.3390/molecules24081625.
Li H, Niu X, Chai J, Guo C L, Sun Y H, Li J H, et al. Optimization of hot air drying process for tiger nut and analysis of fatty acid composition of tiger nut oil. Int J Agric & Biol Eng, 2021; 14(6): 228–236.
Li B R, Lin J Y, Zheng Z A, Duan H, Li D, Wu M, et al. Effects of different drying methods on drying kinetics and physicochemical properties of Chrysanthemum morifolium Ramat. Int J Agric & Biol Eng, 2019; 12(3): 187–193.
Shi X F, Chu J Z, Zhang Y F, Liu C Q, Yao X Q. Nutritional and active ingredients of medicinal chrysanthemum flower heads affected by different drying methods. Ind. Crops Prod., 2017; 104: 45–51.
Ni J, Ding C, Zhang Y, Song Z, Hu X, Hao T, et al. Electrohydrodynamic drying of Chinese wolfberry in a multiple needle-to-plate electrode system. Foods, 2019; 8(5): 152. doi: 10.3390/foods8050152.
Zhang W, Pan Z, Xiao H, Zheng Z, Chen C, Gao Z, et al. Pulsed vacuum drying (PVD) technology improves drying efficiency and quality of Poria cubes. Drying Technol., 2018; 36(8): 908–921.
Xie L, Mujumdar A S, Fang X M, Wang J, Dai J W, Du Z L, et al. Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry (Lycium barbarum L.): Effects on drying kinetics and quality attributes. Food Bioprod. Process, 2017; 102: 320–331.
Deng L Z, Yang X H, Mujumdar A S, Zhao J H, Wang D, Zhang Q, et al. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Drying Technol., 2018; 36(8): 893–907.
Lee M H. Official methods of analysis of AOAC International (16th edn): edited by Patricia A. Cunniff, AOAC International, 1995.
Jiang D, Li C, Zielinska S, Liu Y, Gao Z, Wang R, et al. Process performance and quality attributes of temperature and step-down relative humidity controlled hot air drying of Panax notoginseng roots. Int J Agric & Biol Eng, 2021; 14(6): 244–257.
Pathare P B, Opara U L, Al-Said F A J. Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol., 2013; 6(1): 36–60.
Hodaei M, Rahimmalek M, Arzani A. Variation in bioactive compounds, antioxidant and antibacterial activity of Iranian Chrysanthemum morifolium cultivars and determination of major polyphenolic compounds based on HPLC analysis. J. Food Sci. Technol., 2021; 58(4): 1538–1548.
Brand-Williams W, Cuvelier M E, Berset C. Use of a free radical method to evaluate antioxidant activity. Lwt-Food Sci Technol., 1995; 28(1): 25–30.
Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996; 239(1): 70–76.
Jiang D, Xiao H, Zielinska M, Zhu G, Bai T, Zheng Z, et al. Effect of pulsed vacuum drying on drying kinetics and quality of roots of Panax notoginseng (Burk) FH Chen (Araliaceae). Drying Technol., 2020; 1–18. doi: 10.1080/07373937.2020.1761827.
Wang H, Liu Z L, Vidyarthi S K, Wang Q H, Gao L, Li B R, et al. Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes. Drying Technol., 2020; 39(3): 418–431.
Supmoon N, Noomhorm A. Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Drying Technol., 2013; 31(1): 24–31.
Dadalı G, Apar D K, Özbek B. Estimation of effective moisture diffusivity of okra for microwave drying. Drying Technol., 2007; 25(9): 1445–1450.
Yang X H, Deng L Z, Mujumdar A S, Xiao H W, Zhang Q, Kan Z, et al. Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. J. Food Eng., 2018; 231: 101–108.
Kotwaliwale N, Bakane P, Verma A. Changes in textural and optical properties of oyster mushroom during hot air drying. J. Food Eng., 2007; 78(4): 1207–1211.
Kulapichitr F, Borompichaichartkul C, Fang M, Suppavorasatit I, Cadwallader K R. Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai Arabica green coffee beans. Food Chem., 2022; 366: 130504. doi: 10.1016/ j.foodchem.2021.130504.
Wang H, Fang X M, Sutar P P, Meng J S, Wang J, Yu X L, et al. Effects of vacuum-steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food Chem., 2021; 338: 127799. doi: 10.1016/ j.foodchem.2020.127799.
Manzocco L, Calligaris S, Mastrocola D, Nicoli M C, Lerici C R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol., 2000; 11(9-10): 340–346.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.