Review of smart robots for fruit and vegetable picking in agriculture

Zhiheng Wang, Yi Xun, Yingkuan Wang, Qinghua Yang

Abstract


The fruit and vegetable picking has posed a great challenge on the production and markets during the harvest season. Manual picking cannot fully meet the rapid requirements of each market, mainly due to the high labor-intensive and time-consuming tasks, even the aging and shortage of agricultural labor force in recent years. Alternatively, smart robotics can be an efficient solution to increase the planting areas for the markets in combination with changes in cultivation, preservation, and processing technology. However, some improvements still need to be performed on these picking robots. To document the progress in and current status of this field, this study performed a bibliometric analysis. This analysis evaluated the current performance characteristics of various fruit and vegetable picking robots for better prospects in the future. Five perspectives were proposed covering the robotic arms, end effectors, vision systems, picking environments, and picking performance for the large-scale mechanized production of fruits and vegetables in modern agriculture. The current problems of fruit and vegetable picking robots were summarized. Finally, the outlook of the fruit and vegetable picking robots prospected from four aspects: structured environment for fruit planting, the algorithm of recognition and positioning, picking efficiency, and cost-saving picking robots. This study comprehensively assesses the current research status, thus helping researchers steer their projects or locate potential collaborators.
Keywords: picking robot, agricultural robot, robot, precision agriculture, harvest, computer vision
DOI: 10.25165/j.ijabe.20221501.7232

Citation: Wang Z H, Xun Y, Wang Y K, Yang Q H. Review of smart robots for fruit and vegetable picking in agriculture. Int J Agric & Biol Eng, 2022; 15(1): 33–54.

Keywords


picking robot, agricultural robot, robot, precision agriculture, harvest, computer vision

Full Text:

PDF

References


Jahmani R, Alorjani M. Anterolateral bowing of congenital pseudoarthrosis of tibia treated by percutaneous osteotomy and gradual correction using taylor spatial frame, then late insertion of a fussier-duval nail: A case report. The American Journal of Case Reports, 2018; 19: 426–430.

Xiang R, Ying Y B, Jiang H Y. Development of real-time recognition and localization methods for fruits and vegetables in field. Transactions of the CSAM, 2013; 44(11): 208–223. (in Chinese)

Zhang Z, Wang Y J, Zhang Z H, Li D P, Wu Z Z, Bai R, et al. Ergonomic and efficiency analysis of conventional apple harvest process. Int J Agric & Biol Eng, 2019; 12(2): 210–217.

Zhao D A, Lv J D, Ji W, Zhang Y, Chen Y. Design and control of an apple harvesting robot. Biosystems Engineering, 2011; 110(2): 112–122.

Ji W, Qian Z, Xu B, Tang W, Li J, Zhao D. Grasping damage analysis of apple by end-effector in harvesting robot. Journal of Food Process Engineering, 2017; 40(6): e12589. doi: 10.1111/jfpe.12589.

Baeten J, Donné K, Boedrij S, Beckers W, Claesen E. Autonomous fruit picking machine: A robotic apple harvester. In: 6th International Conference on Field and Service Robotics - FSR 2007, Chamonix, France, 2017; pp.531-539. doi: 10.1007/978-3-540-75404-6_51.

Davidson J R, Hohimer C J, Mo C, Karkee M. Dual robot coordination for apple harvesting. In: 2017 ASABE Annual International Meeting, Spokane, WA, 2017; Paper number: 1700567. doi: 10.13031/aim.201700567.

Davidson J R, Silwal A, Hohimer C J, Karkee M, Qin Z. Proof-of-concept of a robotic apple harvester. In: 2016 IEEE/RSJ International Conference on Intelligent Robots & Systems (IROS), Daejeon, Korea: IEEE, 2016; pp.634-639. doi: 10.1109/iros.2016.7759119.

He L, Fu H, Karkee M, Zhang Q. Effect of fruit location on apple detachment with mechanical shaking. IFAC-PapersOnLine, 2016; 49(16): 293–298.

Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.

Yang Q H, Zhang J J. A picking execution terminal device and fruit picking machine. China Patent, CN211353149U. 2020-08-28. (in Chinese)

Yang Q H, Mao C B, Ye X F, Yuan Y H, Mao Y S, Du L M, et al. A picking robot for spherical fruits. China Patent, CN212936778U. 2021-04-13. (in Chinese)

Yang Q H, Mao C B, Ye X F, Yuan Y H, Mao Y S, Du L M, et al. Picking execution terminal device with three-level buffer.China Patent, CN212936777U. 2021-04-13. (in Chinese)

Yang Q H, Duan X X, Ye X F, Ouyang K Z, Xun Y. Negative pressure adsorption picking end effector capable of automatically filtering inhaled debris. China Patent, CN112703889A. 2021-04-27. (in Chinese)

Yang Q H, Yuan Y H, Li D Z, Mao C B, Mao Y S, Du L M, et al. Picking end effector with blade cleaning function. China Patent, CN213548441U. 2021-06-29. (in Chinese)

Wang X N, Wu P H, Feng Q C, Wang G H. Design and test of tomatoes harvesting robot. Journal of Agricultural Mechanization Research, 2016; 38(4): 94–98. (in Chinese)

Feng Q, Zou W, Fan P, Zhang C, Wang X. Design and test of robotic harvesting system for cherry tomato. Int J Agric & Biol Eng, 2018; 11(1): 96–100.

Wang L L, Zhao B, Fan J, Hu X, Wei S, Li Y, et al. Development of a tomato harvesting robot used in greenhouse. Int J Agric & Biol Eng, 2017; 10(4): 140–149.

Ling X, Zhao Y S, Gong L, Liu C L, Wang T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robotics and Autonomous Systems, 2019; 114: 134–143..

Kondo N, Nishitsuji Y, Ling P P, Ting K C. Visual feedback guided robotic cherry tomato harvesting. Transactions of the ASAE, 1996; 39(6): 2331–2338.

Kondo N, Ting K C. Robotics for plant production. Artificial Intelligence Review, 1998; 12(1-3): 227–243.

Monta M, Kondo N, Ting K C. End-effectors for tomato harvesting robot. Artificial Intelligence Review, 1998;12(1-3): 11–25.

Kondo N, Yata K, Iida M, Shiigi T, Monta M, Kurita M, et al. Development of an end-effector for a tomato cluster harvesting robot. Engineering in Agriculture, Environment and Food, 2010; 3(1): 20–24.

Arima S, Shibusawa S, Kondo N, Yamashita J. Traceability based on multi-operation robot; Information from spraying, harvesting and grading operation robot. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan: IEEE, 2003; pp.1204–1209. doi: 10.1109/AIM.2003.1225514.

Yaguchi H, Nagahama K, Hasegawa T, Inaba M. Development of an autonomous tomato harvesting robot with rotational plucking gripper. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea: IEEE, 2016; pp.652–657. doi: 10.1109/IROS.2016.7759122.

Chen X Y, Chaudhary K, Tanaka Y, Nagahama K, Yaguchi H, Okada K, et al. Reasoning-based vision recognition for agricultural humanoid robot toward tomato harvesting. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany: IEEE; 2015; pp.6487–6494. doi: 10.1109/IROS.2015.7354304.

Tanigaki K, Fujiura T, Akase A, Imagawa J. Cherry-harvesting robot. Computers and Electronics in Agriculture, 2008; 63(1): 65–72.

Ji C. Vision information acquisition for fruit harvesting robot and development of robot prototype system. PhD dissertation. Beijing: China Agricultural University, 2014; 101p. (in Chinese)

Zhao Y S, Gong L, Liu C L, Huang Y X. Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-PapersOnLine, 2016; 49(16): 161–165.

Liu J Z, Li P P, Li Z G. Hardware design of the end-effector for tomato-harvesting robot. Transactions of the CSAM, 2008; 39(3): 109–112. (in Chinese)

Liu J Z, Xu X Q, Li P P. Analysis and experiment of laser cutting of fruit peduncles. Transactions of the CSAM, 2014; 45(1): 59–64. (in Chinese)

Liu J Z, Li P P, Ni Q, Li Z G. Design and test of the vacuum suction device for tomato harvesting robot. Transactions of the CSAM, 2010; 41(10): 170–173,184. (in Chinese)

Li Z G, Liu J Z, Li P P. Relationship between mechanical property and damage of tomato during robot harvesting. Transactions of the CSAE, 2010; 26(5): 112–116. (in Chinese)

Liu J Z, Bai X X, Li P P. Burger's modified model for characterization of tomato fruit creep characteristics. Journal of Agricultural Engineering, 2013; 29(9): 249–255. (in Chinese)

Liu J Z, Bai X X, Li P P, Mao H P. Complex collision model in high-speed gripping of fruit. Transactions of the CSAM, 2014; 45(4): 49–54, 172. (in Chinese)

Chiu Y C, Yang P Y, Chen S. Development of the end-effector of a picking robot for greenhouse-grown tomatoes. Applied Engineering in Agriculture, 2013; 29(6): 1001–1009.

Nagata M, Hiyoshi K, Cao Q, Muta S, Ootsu K. Basic study on strawberry harvesting robot (Part II). IFAC Proceedings Volumes, 2000; 33(29): 55–59.

Arima S, Kondo N, Monta M. Strawberry harvesting robot on table-top culture. In: 2004 ASAE Annual Meeting, Ottawa, Canada: ASABE, 2004; Paper number: 043089. doi: 10.13031/2013.16728.

Nagasaki Y, Hayashi S, Nakamoto Y, Kawashima H, Kohno Y. Development of a Table-top Cultivation System for Robot Strawberry Harvesting. JARQ-Japan Agricultural Research Quarterly, 2013; 47(2): 165–169.

Shiigi T, Kurita M, Kondo N, Ninomiya K, Rajendra P, Kamata J, et al. Strawberry harvesting robot for fruits grown on table top culture. In: 2008 Providence, Rhode Island, St. Joseph, MI: ASABE, 2008; Paper number: 084046. doi: 10.13031/2013.24754.

Yamamoto S, Hayashi S, Saito S, Ochiai Y, Yamashita T, Sugano S. Development of robotic strawberry harvester to approach target fruit from hanging bench side. IFAC Proceedings Volumes, 2010; 43(26): 95–100.

Chen L B. Study on picking system for strawberry harvesting robots. MS dissertation. Beijing: China Agricultural University, 2005; 52p. (in Chinese)

Li C Y, Fang A Q, Tan H, Chen X L. Elevated strawberry picking robot system research. Machinery Design & Manufacture, 2017; 6: 245–247, 251. (in Chinese)

Hayashi S, Shigematsu K, Yamamoto S, Kobayashi K, Kohno Y, Kamata J, et al. Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 2010; 105(2): 160–171.

Xiong Y, Peng C, Grimstad L, From P J, Isler V. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. Computers and Electronics in Agriculture, 2019; 157: 392–402.

Xiong Y, Ge Y, Grimstad L, From P J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. Journal of Field Robotics, 2020; 37(2): 202–224.

De Preter A, Anthonis J, De Baerdemaeker J. Development of a Robot for Harvesting Strawberries. IFAC-PapersOnLine, 2018; 51(17): 14–19.

Han K-S, Kim S-C, Lee Y-B, Kim S-C, Im D-H, Choi H-K, et al. Strawberry harvesting robot for bench-type cultivation. Journal of Biosystems Engineering, 2012; 37(1): 65–74.

Feng Q C, Zheng W G, Qiu Q, Jiang K, Guo R. Study on strawberry robotic harvesting system. In: 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhangjiajie, China: IEEE, 2012; pp.320-324. doi: 10.1109/csae.2012.6272606.

Guo F, Cao Q X, Masateru N. Fruit detachment and classification method for strawberry harvesting robot. International Journal of Advanced Robotic Systems, 2008; 5(1): 5662. doi: 10.5772/5662.

Flemmer R C, Flemmer C L. Innovations in fruit packing: a slow kiwifruit packing line and a robotic apple packer. International Journal of Postharvest Technology and Innovation, 2011, 2(2): 120–130.

Kahya E, Arm S. Research on robotics application in fruit harvesting. Journal of Agricultural Science and Technolog, 2014; 4(5): 386–392.

Scarfe A J, Flemmer R C, Bakker H H, Flemmer C L. Development of an autonomous kiwifruit picking robot. In: 2009 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, 2009; pp.380–384. doi: 10.1109/ICARA.2000.4804023.

Williams H A M, Jones M H, Nejati M, Seabright M J, Bell J, Penhall N D, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosystems Engineering, 2019; 181: 140–156.

Williams H, Ting C, Nejati M, Jones M H, Penhall N, Lim J, et al. Improvements to and large-scale evaluation of a robotic kiwifruit harvester. Journal of Field Robotics, 2019; 37(2): 187–201.

Fu L S, Zhang F N, Yoshinori G, Li Z, Wang B, Cui Y J. Development and experiment of end-effector for kiwifruit harvesting robot. Transactions of the CSAM, 2015; 46(3): 1–8. (in Chinese)

Liu J, Ling C, Guo S C, Peng Z Y. Design and research of citrus fruit picking machine. Packaging Engineering, 2019; 40(17): 56–62. (in Chinese)

Liu B. Research on visual navigation system of citrus picking robot mobile platform. Master dissertation. Chongqing: Chongqing University of Technology, 2019; 90p. (in Chinese)

Ma J T, Wang Y, He Y, Wang K, Zhang Y T. Motion planning of citrus harvesting manipulator based on informed guidance point of configuration space. Transactions of the CSAE, 2019; 35(8): 100–108. (in Chinese)

Wang Y, Fu S, Zhang Z, Ma J T, Xu H B. Design and experiment of end effector of citrus picking robot. Journal of Agricultural Science and Technology, 2018; 20(1): 69–77. (in Chinese)

Wang Y, Xu H B, Zhang M, Ma J T, Liu B, He Y. Design and experiment of bite-model end-effector for citrus harvesting by simulating with mouth of snake. Transactions of the CSAM, 2018; 49(10): 54–64. (in Chinese)

Yang C H, Liu Y P, Wang Y, Xiong L Y, Xu H B, Zhao W H. Research and experiment on recognition and location system for citrus picking robot in natural environment. Transactions of the CSAM, 2019; 50(12): 14–22, 72. (in Chinese)

Lu W, Song A G, Cai J R, Sun H B, Cheng X Y. Structural design and kinematics algorithm research for orange harvesting robot. Journal of Southeast University (Natural Science Edition), 2011; 41(1): 95–100. (in Chinese)

Mehta S S, Burks T F. Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 2014; 102: 146–158.

Hayashi S, Ganno K, Ishii Y, Tanaka I. Robotic harvesting system for eggplants. Japan Agricultural Research Quarterly: JARQ, 2002; 36(3): 163–168.

Hayashi S, Ganno K, Ishii Y, Tanaka I. Development of a harvesting end-effector for eggplants. Shokubutsu Kojo Gakkaishi, 2001; 13(2): 97–103.

Song J, Sun X Y, Zhang T Z, Zhang B. Design and development of transmission of picking robot for eggplant. Journal of Mechanical Transmission, 2009; 33(5): 36–38,109. (in Chinese)

Song J, Sun X Y, Zhang T Z, Zhang B, Xu L M. Design and experiment of opening picking robot for eggplant. Transactions of the CSAM, 2009; 40(1): 143–147. (in Chinese)

Kitamura S, Oka K. Recognition and cutting system of sweet pepper for picking robot in greenhouse horticulture. In: 2005 IEEE International Conference on Mechatronics and Automation, Falls, ON, Canada: IEEE, 2005; 4: 1807–1812. doi: 10.1109/ICMA.2005.1626834.

Kitamura S, Oka K, Ikutomo K, Kimura Y, Taniguchi Y. A distinction method for fruit of sweet pepper using reflection of LED light. In: 2008 SICE Annual Conference, Chofu, Japan: IEEE, 2008; pp.491–494. doi: 10.1109/SICE.2008.4654705.

Kitamura S, Oka K. Improvement of the ability to recognize sweet peppers for picking robot in greenhouse horticulture. In: 2006 SICE-ICASE International Joint Conference, Busan, South Korea: IEEE, 2006; pp.353–356. doi: 10.1109/SCIE.2006.315789.

Bachche S, Oka K. Performance testing of thermal cutting systems for sweet pepper harvesting robot in greenhouse horticulture. Journal of System Design and Dynamics, 2013; 7(1): 36–51.

Bac C W, Hemming J, van Tuijl B A J, Barth R, Wais E, van Henten E J. Performance evaluation of a harvesting robot for sweet pepper. Journal of Field Robotics, 2017; 34(6): 1123–1139

Barth R, Hemming J, Henten E J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation. Biosystems Engineering, 2016;146: 71–84.

Hemming J, Ruizendaal J, Hofstee J W, van Henten E J. Fruit detectability analysis for different camera positions in sweet-pepper. Sensors, 2014; 14(4): 6032–6044.

Lehnert C, English A, McCool C, Tow A W, Perez T. Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot Automation Letters, 2017; 2(2): 872–879.

Lehnert C, Sa I, McCool C, Uperoft B, Perez T. Sweet pepper pose detection and grasping for automated crop harvesting. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm: Sweden: IEEE, 2016; pp. 2428–2434. doi: 10.1109/ICRA.2016.7487394.

Ji C, Feng Q C, Yuan T, Tan Y Z, Li W. Development and performance analysis on cucumber harvesting robot system in greenhouse. Robot, 2011; 33(6): 726–730. (in Chinese)

Qian S M, Yang Q H, Wang Z H, Bao G J, Zhang L B. Research on holding characteristics of cucumber and end-effector of cucumber picking. Transactions of the CSAE, 2010; 26(7): 107–112. (in Chinese)

Wang Y. Research on motion planning and control system of the cucumber picking robot. MS dissertation, Zhejiang: Zhejiang University of Technology, 2010; 118p. (in Chinese)

van Henten E J, Hemming J, van Tuijl B A J, Kornet J G, Meuleman J, Bontsema J, et al. An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 2002; 13(3): 241–258.

van Henten E J, van Tuijl B A J, Hemming J, Kornet J G, Bontsema J, van Os E A. Field test of an autonomous cucumber picking robot. Biosystems Engineering, 2003; 86(3): 305–313.

Roshanianfard A, Noguchi N, Kamata T. Design and performance of a robotic arm for farm use. Int J Agric & Biol Eng, 2019; 12(1): 146–158.

Zhang K L, Xu L M, Zhang D. Design and analysis of a 4-PPPR parallel manipulator for strawberry harvesting in the ridge cultivation model. In: 2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE), Singapore: IEEE, 2016; pp. 248–251. doi: 10.1109/CCSSE.2016.7784391.

Gao Z C, Wang P H, Wang Y H, Xiao J, Li X Y. The selection design of servo system for mechanical arm of oil-tea fruit picking robot. Journal of Agricultural Mechanization Research, 2015; 37(5): 140–144, 150. (in Chinese)

Ling P P, Ehsani R, Ting K C, Chi Y T, Draper C. Sensing and end-effector for a robotic tomato harvester. In: 2004 ASAE Annual Meeting, Ottawa, Canada: ASABE, 2004; Paper No. 043088. doi: 10.13031/2013.16727.

Shao K. Intelligent tomato picking robot with five-DOF manipulator. Jiangsu Agricultural Sciences, 2018; 46(21): 250–253. (in Chinese)

Ling X, Zhao Y S, Gong L, Liu C L, Wang T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robotics and Autonomous Systems, 2019; 114: 134–143.

Liu X K, Li B, Chang J, Zhang G W, Wang C. Structure design and analysis of wolfberry picking robot' s dual manipulator. Chinese High Technology Letters, 2019; 29(2): 175–182. (in Chinese)

Zhang C L, Chen L Q, Xia J F, Zhang J M. Effects of blade sliding cutting angle and stem level on cutting energy of rice stems. Int J Agric & Biol Eng, 2019; 12(6): 75–81.

Zhao J L, Guo M Z, Lu Y, Huang D Y, Zhuang J. Design of bionic locust mouthparts stubble cutting device. Int J Agric & Biol Eng, 2020; 13(1): 20–28.

Liu C L, Zhang T Z, Yang L. Design of end effector of eggplant picking robot. Journal of Agricultural Mechanization Research, 2008; 12: 62–64. (in Chinese)

Zhou Z C, Bontsema J, Vankollenburg-Crisan L. Development of cucumber harvesting robot in Netherlands. Transactions of the CSAE, 2001; 17(6): 77–80. (in Chinese)

Kondo N, Ting K C. Robotics for plant production. Artif Intell Rev, 1998; 12(1-3): 227–243.

Cho S I, Chang S J, Kim Y Y, An K J. Development of a three-degrees- of-freedom robot for harvesting lettuce using machine vision and fuzzy logic control. Biosystems Engineering, 2002; 82(2): 143–149.

Ting K C, Giacomelli G A, Shen S J, Kabala W P. Robot workcell for transplanting of seedlings. 2. End-effector development. Transactions of the ASAE, 1990; 33(3): 1013–1017.

Ryu K H, Kim G, Han J S. Development of a robotic transplanter for bedding plants. Journal of Agricultural Engineering Research, 2001; 78(2): 141–146.

Cheng G. Research on the control strategy of the new type of bending joint and its multi-joint fingers. Master dissertation. Hangzhou: Zhejiang University of Technology, 2003; 72p. (in Chinese)

Zhao J W, Liu M H, Yang G B. Discrimination of mature tomato based on HIS color space in natural outdoor scenes. Transactions of the CSAM, 2004; 35(5): 122–124,135. (in Chinese)

Si Y S, Qiao J, Liu G, Gao R, He B. Recognition and location of fruits for apple harvesting robot. Transactions of the CSAM, 2010; 41(9): 148–153. (in Chinese)

Yang Q, Chen C, Dai J, Xun Y Bao G J. Tracking and recognition algorithm for a robot harvesting oscillating apples. Int J Agric & Biol Eng, 2020; 13(5): 163–170.

Jiang G Q, Zhao C J. Apple recognition based on machine vision. In: 2012 International Conference on Machine Learning and Cybernetics (ICMLC 2012), Xi’an: IEEE, 2012; pp.1148–1151. doi: 10.1109/ICMLC.2012.6359517.

Ji W, Zhao D, Cheng F, Xu B, Zhang Y, Wang J J. Automatic recognition vision system guided for apple harvesting robot. Computers & Electrical Engineering, 2012; 38(5): 1186–1195.

Lei X, Ouyang H, Xu L. Mature pomegranate recognition methods in natural environments using machine vision. Ciencia Rural, 2019; 49(9): e20190298. doi: 10.1590/0103-8478cr20190298.

Song J. Image segmentation of eggplants in growing environment based on improved BP neural network. In: Global Congress on Science Engineering (GCSE 2010), World Association of Science Engineering, Yantai, 2010; pp.599–603. doi: 10.4028/www.scientific.net/AMM.40-41.599.

Song Z Z, Fu L S, Wu J Z, Liu Z H, Li R, Cui Y J. Kiwifruit detection in field images using Faster R-CNN with VGG16. IFAC-PaperOnLine, 2019; 52(30): 76–81.

Fu L S, Feng Y L, Majeed Y, Zhang X, Zhang J, Karkee M, et al. Kiwifruit detection in field images using Faster R-CNN with ZFNet. IFAC-PaperOnline, 2018; 51(17): 45–50.

Liang Q K, Zhu W, Long J Y, Wang Y A, Sun W, Wu W N. A real-time detection framework for on-tree mango based on SSD network. In: 11th International Conference on Intelligent Robotics and Applications (ICIRA 2018). Newcastle, 2018; pp. 423–436. doi: 10.1007/978-3-319- 97589-4_36.

Bresilla K, Perulli G D, Boini A, Morandi B, Grappadelli L C, Manfrini L. Single-shot convolution neural networks for real-time fruit detection within the tree. Frontiers in Plant Science, 2019; 10: 611. doi: 10.3389/fpls.2019.00611.

Lv S L, Lu S H, Li Z, Hong T S, Xue Y J, Wu B L. Orange recognition method using improved YOLOv3-LITE lightweight neural network. Transactions of the CSAE, 2019; 35(17): 205–214. (in Chinese)

Xun Y, Cheng X, Li W, Liu G, Xu C G. Automatic recognition of on-tree apples based on contour curvature. Journal of Jiangsu University (Natural Science Edition), 2007; 28(6): 461–464. (in Chinese)

Silwal A, Gongal A, Karkee M. Identification of red apples in field environment with over the row machine vision system. Agricultural Engineering International: CIGR Journal, 2014; 16: 66–75.

Zhuang J J, Luo S M, Hou C J, Tang Y, He Y, Xue X Y. Detection of orchard citrus fruits using a monocular machine vision-based method for automatic fruit picking applications. Computers and Electronics in Agriculture, 2018; 152: 64–73.

Zhao X K, Li H, Zhu Q B, Huang M, Guo Y, Qin J. Automatic sweet pepper detection based on point cloud images using subtractive clustering. Int J Agric & Biol Eng, 2020; 13(3): 154–160.

Wang D D, Xu Y, Song H B, He D J, Zhang H H. Fusion of K-means and Ncut algorithm to realize segmentation and reconstruction of two overlapped apples without blocking by branches and leaves. Transactions of the CSAE, 2015; 31(10): 227–234. (in Chinese)

Fu L, Tola E, Al-Mallahi A, Li R, Cui Y. A novel image processing algorithm to separate linearly clustered kiwifruits. Biosystems Engineering, 2019; 183: 184–195.

Ji W, Lv X Q, Zhao D A, Jia W K. Edge preserving Retinex enhancement algorithm of night vision image for apple harvesting robot. Transactions of the CSAE, 2016; 32(6): 189–196. (in Chinese)

Jia W K, Zhao D A, Ruan C Z, Liu X Y, Chen Y, Ji W. Combined method for night vision image denoising based on wavelet transform and ICA. Transactions of the CSAM, 2015; 46(9): 9–17. (in Chinese)

Zhu D L, Chen B Q, Yang Y N, Liangxi H Z, Yang M, Qiao Y. Method of haze-removal based on dark channel prior in vision system of apple harvest robot. Transactions of the CSAE, 2016; 32(16): 151–158. (in Chinese)

Yang Q H, Chen Y Q, Xun Y, Bao G J. Superpixel-based segmentation algorithm for mature citrus. Int J Agric & Biol Eng, 2020; 13(4): 166–171.

Yasukawa S, Li B, Sonoda T, Ishii K. Development of a tomato harvesting robot. In: 2017 International Conference on Artificial Life and Robotics (ICAROB), Miyazaki, 2017; pp.408–411. doi: 10.5954/ICAROB.2017.OS22-1.

Feng Q C, Wang X N, Wang G H, Zhen L. Design and test of tomatoes harvesting robot. In: 2015 IEEE International Conference on Information and Automation, Lijiang, China: IEEE, 2015; pp.949–952. doi: 10.1109/ICInfA.2015.7279423.

Liu J Z, Li P P, Li Z G. A multi-sensory end-effector for spherical fruit harvesting robot. In: 2007 IEEE International Conference on Automation and Logistics, Jinan: IEEE, 2007; pp.258–262. doi: 10.1109/ICAL.2007.4338567.

Yamamoto S, Hayashi S, Yoshida H, Kobayashi K. Development of a stationary robotic strawberry harvester with a picking mechanism that approaches the target fruit from below. JARQ-Japan Agricultural Research Quarterly, 2014; 48(3): 261–269.

Zhang K L, Yang L, Wang L J, Zhang L X, Zhang T Z. Design and experiment of elevated substrate culture strawberry picking robot. Transactions of the CSAM, 2012; 43(9): 165–172. (in Chinese)

Feng Q C, Zheng W G, Jiang K, Qiu Q, Guo R. Design of strawberry harvesting robot on table-top culture. Journal of Agricultural Mechanization Research, 2012; 34(7): 122–126. (in Chinese)

Zhang Q, Tao R Z, Ding S S, Zhang C F, Shen Z Q. Structure design and experiment of intelligent strawberry picking robot based on machine vision. Journal of Bengbu University, 2019; 8(2): 52–56. (in Chinese)

Jovicich E, Cantliffe D J, Sargent S A, Osborne L S. Production of greenhouse-grown peppers in Florida. Gainesville: University of Florida, Institute of Food and Agricultural Sciences, 2004.

Jovicich E, Vansickle J J, Cantliffe D J, Stoffella P J. Greenhouse-grown colored peppers: A profitable alternative for vegetable production in Florida. Horttechnology, 2005; 15(2): 355–369.

Jovicich E, Cantliffe D J, Stoffella P J. Fruit yield and quality of greenhouse-grown bell pepper as influenced by density, container, and trellis system. Horttechnology, 2004; 14(4): 507–513.

Bac C W, Van Henten E J, Hemming J, Edan Y. Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. Journal of Field Robotics, 2014; 31(6): 888–911.

Lv J, Wang Y, Xu L, Gu Y, Zou L, Yang B, et al. A method to obtain the near-large fruit from apple image in orchard for single-arm apple harvesting robot. Scientia Horticulturae, 2019; 257: 1–6.

Luo L, Tang Y, Lu Q, Chen X, Zhang P, Zou X. A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard. Computers in Industry, 2018; 99: 130–139.

Yang Q H, Luo S L, Chang C, Xun Y, Bao G J. Segmentation algorithm for Hangzhou white chrysanthemums based on least squares support vector machine. Int J Agric & Biol Eng, 2019; 12(4): 127–134.

Wen D M, Ren A X, Ji T, Maria Flores-Parra I, Yang X T, Li M. Segmentation of thermal infrared images of cucumber leaves using K-means clustering for estimating leaf wetness duration. Int J Agric & Biol Eng, 2020; 13(3): 161–167.

Ye H C, Huang W J, Huang S Y, Cui B, Dong Y Y, Guo A T, et al. Identification of banana fusarium wilt using supervised classification algorithms with UAV-based multi-spectral imagery. Int J Agric & Biol Eng, 2020; 13(3): 136–142.

Xue J R, Fuentes S, Poblete-Echeverria C, Viejo C G, Tongson E, Du H, et al. Automated Chinese medicinal plants classification based on machine learning using leaf morpho-colorimetry, fractal dimension and visible/near infrared spectroscopy. Int J Agric & Biol Eng, 2019; 12(2): 123–131.




Copyright (c) 2022 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office