Novel green-fruit detection algorithm based on D2D framework
Abstract
Keywords: green-fruit detection, D2D framework, automatic harvesting, MobileNetV2+FPN, binary mask prediction, anchor-free
DOI: 10.25165/j.ijabe.20221501.6943
Citation: Wei J M, Ding Y H, Liu J, Ullah M Z, Yin X, Jia W K. Novel green-fruit detection algorithm based on D2D framework. Int J Agric & Biol Eng, 2022; 15(1): 251–259.
Keywords
Full Text:
PDFReferences
Jia W, Zhang Y, Lian J, Zheng Y J, Zhao D A, Li C J. Apple harvesting robot under information technology: A review. International Journal of Advanced Robotic Systems, 2020; 17(3): 1729881420925310. doi: 10.1177/179881420925310.
Xiong Y, Ge Y, Grimstad L, From P J. An autonomous
strawberry-harvesting robot: Design, development, integration, and field evaluation. Journal of Field Robotics, 2020; 37(2): 202–224.
Tang Y C, Chen M Y, Wang C L, Luo L F, Li J H, Lian G P, et al. Recognition and localization methods for vision–based fruit picking robots: A review. Frontiers in Plant Science, 2020; 11: 510. doi: 10.3389/ fpls.2020.00510.
Fu L S, Gao F F, Wu J Z, Li R, Karkee M, Zhang Q. Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Computers and Electronics in Agriculture, 2020; 177: 105687. doi: 10.1016/j.compag.2020.105687.
Ilea D E, Whelan P F. Image segmentation based on the integration of colour–texture descriptors-A review. Pattern Recognition, 2011; 44(10-11): 2479–2501.
Sharma P, Suji J. A review on image segmentation with its clustering techniques. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016; 9(5): 209–218.
Jia W K, Zheng Y J, Zhao D A, Yin Xiang, Liu X Y, Du R C. Preprocessing method of night vision image application in apple harvesting robot. Int J Agric & Biol Eng, 2018; 11(2): 158–163.
Arefi A, Motlagh A M, Mollazade K, Teimourlou R F. Recognition and localization of ripen tomato based on machine vision. Australian Journal of Crop Science, 2011; 5(10): 1144–1149.
Linker R, Cohen O, Naor A. Determination of the number of green apples in RGB images recorded in orchards. Computers and Electronics in Agriculture, 2012; 81: 45–57.
Liao W, Zheng L H, Li M Z, Sun H, Yang W. Green apple recognition in natural illuminations based on random forest algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2017; 48(S1): 86–91. (in Chinese)
Tian Y Y, Duan H C, Luo R, Zhang Y, Jia W K, Lian J, et al. Fast recognition and location of target fruit based on depth information. IEEE Access, 2019; 7: 170553–170563.
Li B R, Long Y, Song H B. Detection of green apples in natural scenes based on saliency theory and Gaussian curve fitting. Int J Agric & Biol Eng, 2018; 11(1): 192–198.
Koirala A, Walsh K B, Wang Z L, McCarthy C. Deep learning-method overview and review of use for fruit detection and yield estimation. Computers and Electronics in Agriculture, 2019; 162: 219–234.
Boogaard F P, Rongen K H, Kootstra G W. Robust node detection and tracking in fruit-vegetable crops using deep learning and multi-view imaging. Biosystems Engineering, 2020; 192: 117–132.
Bargoti S, Underwood J P. Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics, 2017; 34(6): 1039–1060.
Kang H, Chen C. Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Computers and Electronics in Agriculture, 2020; 171: 105302. doi: 10.1016/j.compag.2020.105302.
Jia W K, Tian Y Y, Luo R, Zhang Z H, Lian J, Zheng Y J. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Computers and Electronics in Agriculture, 2020; 172: 105380. doi: 10.1016/j.compag.2020.105380.
Wang D, He D. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network. Transactions of the CSAE, 2019; 35(3): 156–163. (in Chinese)
Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L C. MobilenetV2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Lake City, USA: IEEE, 2018; pp.4510–4520. doi: 10.1109/CVPR.2018.00474.
Lin T Y, Dollár P, Girshick R, He B. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA: IEEE, 2017; pp.935–944. doi: 10.1109/CVPR.207.106.
Girshick R. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile: IEEE, 2015; pp.1440–1448.
Cao J, Cholakkal H, Anwer R M, Khan F S, Pang Y, Shao L. D2Det: Towards high quality object detection and instance segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020; pp.11485–11494. doi: 10.1109/CVPR42600.2020.01150.
Howard A, Sandler M, Chu G, Chen L C, Chen B, Tan M X, et al. Searching for MobilenetV3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, 2019; pp.1314–1324. arXiv: 1905.02244v1.
Zhang Y Q, Chu J, Leng L, Miao J. Mask-refined R-CNN: A network for
refining object details in instance segmentation. Sensors, 2020; 20(4): 1010. doi: 10.3390/s20041010.
Zhang K, Sun M, Han T X, Yuan X F, Guo L R, Liu T. Residual networks of residual networks: Multilevel residual networks. IEEE Transactions on Circuits and Systems for Video Technology, 2017; 28(6): 1303–1314.
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016; 39(6): 1137–1149.
Tian Z, Shen C H, Chen H, He T. FCOS: Fully Convolutional One-stage Object Detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019; pp. 9627–9636. doi: 10.1109/
ICCV.2019.00972.
Dai J F, Qi H Z, Xiong Y W, Li Y, Zhang G D, Hu H, et al. Deformable convolutional networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), 2017; pp.764–773. doi: 10.1109/ICCV.2017.89.
He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision. 2017; pp.2961–2969.
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y. SSD: Single shot multibox detector. In: Computer Vision-ECCV 2016. Lecture Notes in Computer Science, Springer, Cham, 2016; 9905: 21–37. doi: 10.1007/978-3-319-46448-0_2.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.