Development of a mobile application for identification of grapevine (Vitis vinifera L.) cultivars via deep learning
Abstract
Keywords: deep learning, mobile phone, grapevine cultivar, vine leaf image, identification, Vitis vinifera L.
DOI: 10.25165/j.ijabe.20211405.6593
Citation: Liu Y X, Shen L, Su J Y, Lu N, Fang Y L, Liu F, et al. Development of a mobile application for identification of grapevine (Vitis vinifera L.) cultivars via deep learning. Int J Agric & Biol Eng, 2021; 14(5): 172–179.
Keywords
Full Text:
PDFReferences
Furbank R T, Tester M. Phenomics--technologies to relieve the phenotyping bottleneck. Trends Plant Sci, 2011; 16(12): 635–644.
Youens-Clark K, Buckler E, Casstevens T, Chen C, Declerck G, Derwent P, et al. Gramene database in 2010: updates and extensions. Nucleic Acids Research, 2011; 39: D1085–D1094. doi: 10.1093/nar/gkq1148.
Joshua C, Pankaj K, Miklavcic S J. Land-based crop phenotyping by image analysis: consistent canopy characterization from inconsistent field illumination. Plant Methods, 2018; 14(1): 39. doi: 10.1186/s13007-018- 0308-5.
Wan Y, Schwaninger H R, Baldo A M, Labate J A, Zhong G Y, Simon C J. A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC Evolutionary Biology, 2013; 13: 141. doi: 10.1186/ 1471-2148-13-141.
Berk P, Stajnko D, Belsak A, Hocevar M. Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LIDAR measurement system. Computers and Electronics in Agriculture, 2020; 169: 105158. doi: 10.1016/j.compag.2019.105158.
Tian K, Li J, Zeng J, Evans A, Zhang L. Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm. Computers and Electronics in Agriculture, 2019; 165: 104962. doi: 10.1016/j.compag.2019.104962.
Vanderwel M C, Lopez E L, Sprott A H, Khayyatkhoshnevis P, Shovon T A. Using aerial canopy data from UAVs to measure the effects of neighbourhood competition on individual tree growth. Forest Ecology and Management, 2020; 461: 117949. doi: 10.1016/j.foreco.2020.117949.
Gao Z, Luo Z, Zhang W, Lyu Z, Xu Y. Deep Learning Application in Plant Stress Imaging: A Review. AgriEngineering, 2020; 2(3): 430–446. doi: 10.3390/agriengineering2030029.
Shi Y, Zhu Y, Wang X, Sun X, Ding Y, Cao W, et al. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods, 2020; 16(1): 11. doi: 10.1186/s13007-020-0559-9.
Han L, Yang G, Dai H, Yang H, Xu B, Li H, et al. Combining self-organizing maps and biplot analysis to preselect maize phenotypic components based on UAV high-throughput phenotyping platform. Plant Methods, 2019; 15(1): 57. doi: 10.1186/s13007-019-0444-6.
Chopin J, Kumar P, Miklavcic S J. Land-based crop phenotyping by
image analysis: consistent canopy characterization from inconsistent field illumination. Plant Methods, 2018; 14(1): 39. doi: 10.1186/s13007-018- 0308-5
Bresilla K, Perulli G D, Boini A, Morandi B, Corelli Grappadelli L, Manfrini L. Single-shot convolution neural networks for real-time fruit detection within the tree. Frontiers in Plant Science, 2019; 10: 611. doi: 10.3389/fpls.2019.00611.
Mohanty S P, Hughes D P, Salathé M. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 2016; 7: 1419. doi: 10.3389/fpls.2016.01419.
Lee S H, Goëau H, Bonnet P, Joly A. New perspectives on plant disease characterization based on deep learning. Computers and Electronics in Agriculture, 2020; 170: 105220. doi: 10.1016/j.compag.2020.105220.
Desai S V, Balasubramanian V N, Fukatsu T, Ninomiya S, Guo W. Automatic estimation of heading date of paddy rice using deep learning. Plant Methods, 2019; 15(1): 76. doi: 10.1186/s13007-019-0457-1.
Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I. The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Methods, 2018; 14(1): 6. doi: 10.1186/s13007-018-0273-z.
Kamilaris A, Prenafeta-Boldú F X. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 2018; 147: 70–90.
Gao Z, Khot L R, Naidu R A, Zhang Q. Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging. Computers and Electronics in Agriculture, 2020; 179: 105807. doi: 10.1016/j.compag.2020.105807.
Guo R, Xu X, Carole B, Li X, Gao M, Zheng Y, Wang X. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genomics, 2013; 14(1): 554. doi: 10.1186/1471-2164-14-554.
Huang Y-F, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, et al. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biology, 2012; 12(1): 30. doi: 10.1186/1471-2229-12-30.
Aquino A, Barrio I, Diago M-P, Millan B, Tardaguila J. vitisBerry: An Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Computers and Electronics in Agriculture, 2018; 148: 19–28.
Aquino A, Millan B, Gaston D, Diago M P, Tardaguila J. vitisFlower (R) : Development and testing of a novel Android-smartphone application for assessing the number of grapevine flowers per inflorescence using artificial vision techniques. Sensors, 2015; 15(9): 21204–21218.
Cui X, Goel V, Kingsbury B. Data augmentation for deep neural network acoustic modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015; 23(9): 1469–1477.
Youla D. Generalized image restoration by the method of alternating orthogonal projections. IEEE Transactions on Circuits and Systems, 2003; 25(9): 694–702.
Montserrat D M, Lin Q, Allebach J, Delp E J. Training object detection and recognition CNN models using data augmentation. Electronic Imaging, 2017; 10: 27–36.
Simonyan K, Science A Z J C. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv: 1409.1556.
Ramcharan A, Baranowski K, Mccloskey P, Ahmed B, Legg J, Hughes D P. Deep learning for image-based Cassava disease detection. Frontiers in Plant Science, 2017; 8: 1852. doi: 10.3389/fpls.2017.01852
Li Y, Wang H, Dang L M, Sadeghi-Niaraki A, Moon H. Crop pest recognition in natural scenes using convolutional neural networks. Computers and Electronics in Agriculture, 2020; 169: 105174. doi: 10.1016/j.compag.2019.105174.
Thenmozhi K, Srinivasulu Reddy U. Crop pest classification based on deep convolutional neural network and transfer learning. Computers and Electronics in Agriculture, 2019; 164: 104906. doi: 10.1016/j.compag. 2019.104906.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012; 1: 1097–1105.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 2016; pp.770–778. doi: 10.1109/CVPR.2016.90.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vsion and Pattern Recognition, 2015; pp.1–9. doi: 10.1109/
CVPR.2015.7298594.
Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017; pp.2261–2269. doi: 10.1109/CVPR.2017.243.
Ding P, Zhang Y, Deng W J, Jia P, Kuijper A. A light and faster regional convolutional neural network for object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2014; 141: 208–218.
ImageNet. Available: http://www.image-net.org/challenges. Accessed on [2020-12-15].
BS-ISO-5725-1. Accuracy (trueness and precision) of measurement methods and results. General principles and definitions. London: BSI,
; 17p.
Apache Tomcat. Available: https://tomcat.apache.org. Accessed on [2020-12-15].
Pereira C S, Morais R, Reis M. Deep learning techniques for grape plant species identification in natural images. Sensors, 2019; 19(22): 4850. doi: 10.3390/s19224850.
Liu Z, Wang J, Tian Y, Dai S. Deep learning for image-based large-flowered chrysanthemum cultivar recognition. Plant Methods, 2019; 15: 146. doi: 10.1186/s13007-019-0532-7.
Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. International Journal of Computer Vision, 2020; 128(2): 336–359.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.