Spectroscopic measurement approaches in evaluation of dry rubber content of cup lump rubber using machine learning techniques
Abstract
Keywords: cup lump rubber, dry rubber content, spectroscopic measurement, machine learning, partial least squares regression, least-squares support vector machine
DOI: 10.25165/j.ijabe.20211403.6298
Citation: Puttipipatkajorn A, Puttipipatkajorn A. Spectroscopic measurement approaches in evaluation of dry rubber content of cup lump rubber using machine learning techniques. Int J Agric & Biol Eng, 2021; 14(3): 207–213.
Keywords
Full Text:
PDFReferences
Office of Agricultural Economics (OAE). Rubber Research Institute Department of Agriculture. Available: http://www.oae.go.th/view/1/ Information/EN-US. Accessed on [2020-06-06].
Norris K H. Design and development of a new moisture meter. Agric. Eng., 1964; 45(7): 370–372.
Maneewan W, Limpiti S, Theanjumpol P. The application of near infrared reflectance spectroscopy to determine the moisture and protein content in soybean seeds. The 14th International Conference of NIR Spectroscopy, Bangkok, Thailand, 2009.
Rittiron R, Seehalak W. Moisture content in raw rubber sheet analyzed by transflectance near infrared spectroscopy. J. Innov. Opt. Health Sci., 2014; 7(4): 1350068. doi: 10.1142/S1793545813500685.
Suchata S, Theanjumpolb P, Karrilaa S. Rapid moisture determination for cup lump natural rubber by near infrared spectroscopy. Industrial Crops and Products, 2015; 76: 772–780.
Sirisomboon P, Kaewkuptong A, Williams P. Feasibility study on the evaluation of the dry rubber content of field and concentrated latex of Para rubber by diffuse reflectance near infrared spectroscopy. Journal of near infrared spectroscopy, 2013; 21: 81–88.
Davies A M, Grant A. Review: near-infra-red analysis of food. Int. J. Food Sci. Technol., 1987; 22: 191–207.
Lu R F, Chen Y R. Hyperspectral imaging for safety inspection of food and agricultural products. In Proceedings of SPIE Conference on Pathogen Detection and Remediation for Safe Eating, Boston, US, 1998.
Park B. Quality inspection of poultry carcasses. In D.W. Sun (Ed.). Computer vision technology for food quality evaluation. Amsterdam: Academic Press, 2008; pp. 157–187.
Barbin D, ElMasry G, Sun D W, Allen P. Near infrared hyperspectral imaging for grading and classification of pork. Meat Science, 2012; 90(1): 259–268.
Ariana D, Guyer D E, Shrestha B. Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Computers and Electronics in Agriculture, 2016; 50(2): 148–161.
AOAC. Official Methods of Analysis of AOAC International. 2000. Available: http://www.aoac.org/aoac_prod_imis/AOAC/Publications/ Official_Methods_of_Analysis/AOAC_Member/Pubs/OMA/AOAC_Official_Methods_of_Analysis.aspx. Accessed on [2020-04-01].
Nawi N M, Chen G, Jensen T, Mehdizadeh S A. Prediction and classification of sugar content of sugarcane based on skin scanning using visible and shortwave near infrared. Biosystems Engineering, 2013; 115: 154–161.
Barnes R J, Dhanoa M S, Lister S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc., 1989; 43: 772–777.
Dos Santos C A T, Lopo M, Páscoa R N M J, Lopes J A. A review on the applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc., 2013; 67: 1215–1233.
Martens H, Naes T. Multivariate calibration (2nd edition). Chichester: John Wiley & Sons. 1989.
Shao Y, Gao C, Xuan G, Gao X, Chen Y, Hu Z. Determination of damaged wheat kernels with hyperspectral imaging analysis. Agricultural and Biological Engineering, 2020; 13(5): 194–198.
Moghimi A, Aghkhani M H, Sazgarnia A, Sarmad M. Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (pH) of kiwifruit. Biosystems Engineering, 2010; 106:
–302.
Zhao X B, Zhao J W, Huang X Y, Li Y X. Use of FTNIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of “Fuji” apple based on different PLS models. Chemometrics and Intelligent Laboratory Systems, 2007; 87: 43–51.
Vapnik V, Lerner A. Pattern recognition using generalized portrait method. Automation and Remote Control, 1963; 24: 774–780.
Suykens J A K, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Van Gestel T. Least squares support vector machine (Vol. 4). Singapore: World Scientific, 2002.
Sun T, Lin H, Xu H, Ying Y. Effect of fruit moving speed on predicting soluble solids content of ‘Cuiguan’ pears (Pomaceae pyrifolia Nakai cv. Cuiguan) using PLS and LS-SVM regression. Postharvest Biol. Technol., 2009; 51(1): 86–90.
Yua H Y, Niua X Y, Lina H J, Yinga Y B, Lib B B, Panc X X. A feasibility study on on-line determination of rice wine composition by Vis–NIR spectroscopy and least-squares support vector machines. Food Chem., 2009; 113(1): 291–296.
Morellosa A, Pantazia X E, Moshou D, Alexandridisc T, Whettonb R, Tziotziosa G, et al. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Eng., 2016; 152: 104–116.
Han Z, Cai S, Zhang X, Qian Q, Huang Y, Dai F, et al. Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy. Food Chem., 2017; 227: 342–348.
Chen J H, Sun D W. Data fusion and hyperspectral imaging in tandem with least squares-support vector machine for prediction of sensory quality index scores of fish fillet. Food Sci. Technol., 2015; 63(2): 892–898.
Kamruzzaman M, Makino Y, Oshita S. Hyperspectral imaging for real-time monitoring of water holding capacity in red meat. Food Sci. Technol., 2016; 66: 685–691.
Yang Q, Sun D W, Cheng W. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. Food Eng., 2017; 192: 53–60.
De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K. LS-SVM toolbox user’s guide. ESAT-SISTA Technical Report, 2011; 10–146.
Abu-Khalaf N, Hmidat M. Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality. Computer and Electronics in Agriculture, 2020; 173: 105445. doi: 10.1016/ j.compag.2020.105445.
Williams P. The RPD statistic: a tutorial note. NIR News, 2014; 25(1): 22.
Esbensen K H, Geladi P, Larsen A. The RPD myth. NIR News, 2014; 25(5): 24.
Redaellia R, Alfieria M, Cabassi G. Development of a NIRS calibration for total antioxidant capacity in maize germplasm. Talanta, 2016; 154: 164–168.
Ye M, Gao Z, Li Z, Yuan Y, Yue T. Rapid detection of volatile compounds in apple wines using FT-NIR spectroscopy. Food Chemistry, 2016; 190: 701–708.
Hans G, Leblon B, Cooper P, Rocque A L, Nader J. Determination of moisture content and basic specific gravity of Populus tremuloides (Michx.) and Populus balsamifera (L.) logs using a portable near-infrared spectrometer. J. Wood Mater Sci Eng., 2015; 10: 3–16.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.