CFD simulation of sucrose flow field in the stem of greenhouse tomato seedling
Abstract
Keywords: greenhouse tomato, sucrose flow field, computational fluent dynamic, rule of distribution
DOI: 10.25165/j.ijabe.20221501.6061
Citation: Ni J H, Dong J T, Ullah I, Mao H P. CFD simulation of sucrose flow field in the stem of greenhouse tomato seedling. Int J Agric & Biol Eng, 2022; 15(1): 111–115.
Keywords
Full Text:
PDFReferences
Heuvelink E. Dry matter partitioning in tomato: validation of a dynamic simulation model. Annals of botany, 1996; 77(1): 71–80.
Patil S B, Mansur C P, Gaur P M, Salakinkop S R, Alagundagi S C. Planting density affected dry matter production, partitioning, and yield in machine harvestable chickpea genotypes in the irrigated ecosystem. International Journal of Plant Production, 2021; 15(1): 29–43.
Marcelis L, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: A review. Scientia Horticulturae, 1998; 74(1-2): 83–111.
Marcelis L F M. Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany, 1996; 47: 1281–1291.
Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Science, 2000; 154(1): 1–11.
Liesche J, Martens H J, Schulz A. Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma, 2011; 248(1): 181–190.
Minchin P, Thorpe M, Farrar J, Koroleva O. Source–sink coupling in young barley plants and control of phloem loading. Journal of experimental botany, 2002; 53(374): 1671–1676.
Gould N, Morrison D, Clearwater M J, Ong S, Boldingh H, Minchin P E. Elucidating the sugar import pathway into developing kiwifruit berries (Actinidia deliciosa). New Zealand Journal of Crop and Horticultural Science, 2013; 41(4): 189–206.
Thompson M V. Phloem: the long and the short of it. Trends in plant science, 2006; 11(1): 26–32.
Knoblauch M, Peters W S. Münch, morphology, microfluidics–our structural problem with the phloem. Plant, cell & environment, 2010; 33(9): 1439–1452.
Mammeri Y, Sellier D. A surface model of nonlinear, non-steady-state phloem transport. Mathematical Biosicences and Engineering: MBE, 2017; 14(4): 1055–1069.
Savage J A, Zwieniecki M A, Holbrook N M. Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development. Plant Physiology, 2013; 163(3): 1409–1418.
Fan W W, Yuan L J, Li Y L. CFD simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development. Environmental Technology, 2019: 40(27): 3652–3667.
Bendevis M A, Sun Y, Rosenqvist E, Shabala S, Liu F, Jacobsen S-E. Photoperiodic effects on short-pulse 14C assimilation and overall carbon and nitrogen allocation patterns in contrasting quinoa cultivars. Environmental and Experimental Botany, 2014; 104: 9–15.
Bhaskar K U, Murthy Y R, Raju M R, Tiwari S, Srivastava J, Ramakrishnan N. CFD simulation and experimental validation studies on hydrocyclone. Minerals Engineering, 2007; 20(1): 60–71.
Jensen K H, Lee J, Bohr T, Bruus H, Holbrook N M, Zwieniecki M A. Optimality of the Münch mechanism for translocation of sugars in plants. Journal of the Royal Society Interface, 2011; 8(61): 1155–1165.
Li W, Na C, Zhao X C, Fan H Y, Li T. Accumulation of carbohydrate and regulation of 14-3-3 protein on sucrose phosphate synthase (SPS) activity in two tomato species. Journal of Integrative Agriculture, 2014; 13(2): 358–364.
Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, et al. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on a Chip, 2015; 15(21): 4177–4186.
Honig P. Principles of sugar technology. Elsevier, 2013;773p.
Hall A, Minchin P. A closed‐form solution for steady‐state coupled phloem/xylem flow using the L ambert‐W function. Plant, Cell & Environment, 2013; 36(12): 2150–2162.
De Schepper V, De Swaef T, Bauweraerts I, Steppe K. Phloem transport: a review of mechanisms and controls. Journal of experimental botany, 2013; 64(16): 4839–4850.
Thompson M V, Holbrook N M. Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. Journal of Theoretical Biology, 2003; 220(4): 419–455.
Cabrita P, Thorpe M, Huber G J. Hydrodynamics of steady state phloem transport with radial leakage of solute. Frontiers in Plant Science, 2013; 4: 531. doi: 10.3389/fpls.2013.00531.
Babst B A, Ferrieri R A, Gray D W, Lerdau M, Schlyer D J, Schueller M, et al. Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytologist, 2005; 167(1): 63–72.
Mullendore D L, Windt C W, Van As H, Knoblauch M. Sieve tube geometry in relation to phloem flow. The Plant Cell, 2010; 22(3): 579–593.
Windt C W, Vergeldt F J, De Jager P A, Van As H. MRI of long‐distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant, Cell & Environment, 2006; 29(9): 1715–1729.
McCall D, Atherton J. Interactions between diurnal temperature fluctuations and salinity on expansion growth and water status of young tomato plants. Annals of applied biology, 1995; 127(1): 191–200.
Wang Y, Pang Y L, Chen K, Zhai L Y, Shen C C, Wang S, et al. Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. The Crop Journal, 2020; 8(1): 123–135.
Ma Y T, Chen Y J, Zhu J Y, Meng L, Guo Y, Li B G, et al. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize. Global Change Biology, 2018; 121(5): 961–973.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.