Classification of rice seed variety using point cloud data combined with deep learning
Abstract
Keywords: rice seed, variety classification, point cloud data, deep learning, light field camera
DOI: 10.25165/j.ijabe.20211405.5902
Citation: Qian Y, Xu Q J, Yang Y Y, Lu H, Li H, Feng X B, et al. Classification of rice seed variety using point cloud data combined with deep learning. Int J Agric & Biol Eng, 2021; 14(5): 206–212.
Keywords
Full Text:
PDFReferences
Qiu Z, Chen J, Zhao Y, Zhu S, He Y, Zhang C. Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network. Applied Sciences, 2018; 8(2): 212. doi: 10.3390/ app8020212.
Li X H, Ma X, Li Z H, Deng X W, Li H W. Identification of rice variety based on multi-feature fusion and SVM. Journal of Chinese Agricultural Mechanization, 2019; 40(7): 97–102. (in Chinese)
Weng S Z, Tang P P, Yuan H C, Guo B Q, Yu S, Huang L S, et al. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2020; 234: 118237. doi: 10.1016/j.saa.2020.118237.
Kuo T Y, Chung C L, Chen S Y, Lin H A, Kuo Y F. Identifying rice grains using image analysis and sparse-representation-based classification. Computers and Electronics in Agriculture, 2016; 127: 716–725.
Golpour I, Parian J A, Chayjan R A. Identification and classification of bulk paddy, brown, and white rice cultivars with colour features extraction using image analysis and neural network. Czech Journal of Food Sciences, 2018; 32(3): 280–287.
Mittal S, Dutta M, Issac A. Non-destructive image processing based system for assessment of rice quality and defects for classification according to inferred commercial value. Measurement, 2019; 148: 106969. doi: 10.1016/j.measurement.2019.106969.
Fabiyi S D, Vu H, Tachtatzis C, Murray P, Harle D, Dao T, et al. Varietal classification of rice seeds using RGB and hyperspectral images. IEEE Access, 2020; 8: 22493–22505.
Qian Y, Yin W Q, Lin X Z, Ding Y Q, Feng X B. Variety identification of rice seed based on three-dimensional reconstruction method of sequence images. Transactions of the CSAE, 2014; 30(7): 190–196. (in Chinese)
Li H, Qian Y, Cao P, Yin W Q, Dai F, Hu F, et al. Calculation method of surface shape feature of rice seed based on point cloud. Computers and Electronics in Agriculture, 2017; 142(Part A): 416–423.
Feng X B, He P J, Zhang H X, Yin W Q, Qian Y, Cao P, et al. Rice seeds identification based on back propagation neural network model. Int J Agric & Biol Eng, 2019; 12(6): 122–128.
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006; 18(7): 1527–1554.
Niu C G, Liu Y J, Li Z M, Li H. 3D object recognition and model segmentation based on point cloud data. Journal of Graphics, 2019; 40(2): 274–281. (in Chinese)
Charles R Q, Su H, Kaichun M, Guibas L J. PointNet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hi, USA: IEEE, 2017; pp.77–85. doi: 10.1109/CVPR.2017.16.
Ma L, Jin S S, Niu B. 3D hand pose estimation method based on improved PointNet. Application Research of Computers, 2020; 37(10): 3188–3192. (in Chinese)
Zhao Z Y, Cheng Y L, Shi X S, Qin X X, Li X. Terrain classification of LiDAR point cloud based on multi-scale features and PointNet. Laser & Optoelectronics Progress, 2019; 56(5): 251–258. (in Chinese)
Johannsen O, Heinze C, Goldluecke B, Perwaß C. On the calibration of focused plenoptic cameras. In: Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Lecture Notes in Computer Science, Berlin: Springer, 2013; 8200; 302–317. doi: 10.1007/ 978-3-642-44964-2_15.
Schnabel R, Klein W R. Efficient RANSAC for point-cloud shape detection. Computer Graphics Forum, 2007; 26(2): 214–226.
Dong H W. Study for cell grid methods finding k nearest neighbors. Computer Engineering and Applications, 2007; 43(21): 52-56. (in Chinese)
Zheng B C, Peng W, Zhang Y, Ye X Z, Zhang S Y. A survey on 3D model retrieval techniques. Journal of Computer - Aided Design &Computer Graphics, 2004; 16(7): 873–881. (in Chinese)
Yang Y B, Lin H, Zhu Q. Content-based 3D model retrieval: A survey. Chinese Journal of Computers, 2008; 27(10): 1297–1310. (in Chinese)
Armeni I, Sener O, Zamir A R, Jiang H L, Brilakis I, Fischer M, et al. 3D semantic parsing of large-scale indoor spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016; pp.1534–1543. doi: 10.1109/CVPR.2016.170.
Srivastava N, Hinton G, Krizhevsky A, Sutskever L, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014; 15(1): 1929–1958.
Rusu R B, Cousins S. 3D is here: Point cloud library (PCL). In: IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011; pp.1–4. doi: 10.1109/ICRA.2011.5980567.
Qi C R, Yi L, Su H, Guibas L J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. ar Xiv, 2017; arXiv:1706.02413v1.
Phan A V, Nguyen M L, Nguyen Y L H, Bui L T. DGCNN: A convolutional neural network over large-scale labeled graphs. Neural Networks, 2018; 108: 533–543.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.