Assessment of canopy vigor information from kiwifruit plants based on a digital surface model from unmanned aerial vehicle imagery
Abstract
Keywords: canopy vigor, UAV imagery, digital surface model, kiwifruit plant, missing plants, photogrammetry, plant stress
DOI: 10.25165/j.ijabe.20191201.4634
Citation: Xue J R, Fan Y M, Su B F, Fuentes S. Assessment of canopy vigor ınformation from kiwifruit plants based on a digital surface model from unmanned aerial vehicle ımagery. Int J Agric & Biol Eng, 2019; 12(1): 165–171.
Keywords
Full Text:
PDFReferences
Hall A, Lamb D, Holzapfel B, Louis J. Optical remote sensing applications in viticulture: A review. Australian Journal of Grape and Wine Research, 2002; 8(1): 36–47.
Pinter Jr P J, Hatfield J L, Schepers J S, Barnes E M, Moran M S, Daughtry C S, et al. Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing, 2003; 69(6): 647–64.
Torres-Sánchez J, López-Granados F, de Castro A I, Peña-Barragán J M. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PloS one, 2013; 8(3): e58210.
Hunt E R, Cavigelli M, Daughtry C S, Mcmurtrey J E, Walthall C L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 2005; 6(4):
–78.
Schirrmann M, Giebel A, Gleiniger F, Pflanz M, Lentschke J, Dammer K-H. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sensing, 2016; 8(9): 706.
Shamshiri R R, Hameed I A. Fundamental research on unmanned aerial vehicles to support precision agriculture in oil palm plantations. Agricultural Robots-Fundamentals and Application, 2018.
Lan Y B, Shengde C, Fritz B K. Current status and future trends of precision agricultural aviation technologies. Int J Agric & Biol Eng, 2017; 10(3): 1–17.
Hadjimitsis D G, Papadavid G, Agapiou A, Themistocleous K, Hadjimitsis M, Retalis A, et al. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Natural Hazards and Earth System Sciences, 2010; 10(1): 89–95.
Puletti N, Perria R, Storchi P. Unsupervised classification of very high remotely sensed images for grapevine rows detection. European Journal of Remote Sensing, 2014; 47(1): 45–54.
Candiago S, Remondino F, de Giglio M, Dubbini M, Gattelli M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 2015; 7(4): 4026–4047.
Weiss M, Baret F. Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D Macro-structure. Remote Sensing, 2017; 9(2): 111.
Poblete-Echeverría C, Olmedo G F, Ingram B, Bardeen M. Detection and segmentation of vine canopy in ultra-high spatial resolution RGB imagery obtained from unmanned aerial vehicle (UAV): A case study in a commercial vineyard. Remote Sensing, 2017; 9(3): 268.
Poblete T, Ortega-Farías S, Moreno M A, Bardeen M. Artificial neural network to predict vine water status spatial variability using multispectral information obtained from an unmanned aerial vehicle (UAV). Sensors, 2017; 17(11): 2488.
Fuentes S, Poblete-Echeverría C, Ortega-Farias S, Tyerman S, De Bei R. Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods. Australian Journal of Grape and Wine Research, 2014; 20(3): 465–473.
Park S, Ryu D, Fuentes S, Chung H, Hernández-Montes E, O’Connell M. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sensing, 2017; 9(8): 828.
Di Gennaro S F, Rizza F, Badeck F W, Berton A, Delbono S, Gioli B, et al. UAV-based high-throughput phenotyping to discriminate barley vigour with visible and near-infrared vegetation indices. International Journal of Remote Sensing, 2017: 1–15.
Duan T, Chapman S, Guo Y, Zheng B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Research, 2017; 210: 71–80.
Poblete-Echeverría C, Sepulveda-Reyes D, Ortega-Farias S, Zuñiga M, Fuentes S, editors. Plant water stress detection based on aerial and terrestrial infrared thermography: a study case from vineyard and olive orchard. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): 1112; 2014.
Zia S, Du W, Spreer W, Spohrer K, He X, Muller J. Assessing crop water stress of winter wheat by thermography under different irrigation regimes in North China Plain. Int J Agric & Biol Eng, 2012; 5(3): 24–34.
Kustas W P, Anderson M C, Alfieri J G, Knipper K, Torres-Rua A, Parry C K, et al. The grape remote sensing atmospheric profile and evapotranspiration experiment (GRAPEX). Bulletin of the American Meteorological Society, 2018.
Chanussot J, Bas P, Bombrun L, editors. Airborne remote sensing of vineyards for the detection of dead vine trees. Geoscience and Remote Sensing Symposium, 2005 IGARSS'05 Proceedings 2005 IEEE International, IEEE, 2005.
Su B F, Xue J R, Xie C Y, Fang Y L, Song Y Y, Fuentes S. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Int J Agric & Biol Eng, 2016; 9(6): 119–130.
Bendig J, Bolten A, Bareth G. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogrammetrie-Fernerkundung-Geoinformation, 2013; 6(6): 551–562.
Mathews A J, Jensen J L. Visualizing and quantifying vineyard canopy
LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sensing, 2013; 5(5): 2164–2183.
Goldbergs G, Maier S W, Levick S R, Edwards A. Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian Savannas. Remote Sensing, 2018; 10(2): 161.
Nolan A, Park S, Fuentes S, Ryu D, Chung H, editors. Automated detection and segmentation of vine rows using high resolution UAS imagery in a commercial vineyard. Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast, Australia; 2015.
De Bei R, Fuentes S, Gilliham M, Tyerman S, Edwards E, Bianchini N, et al. VitiCanopy: A free computer APP to estimate canopy vigor and porosity for grapevine. Sensors, 2016; 16(4): 585.
Salgadoe S, Robson A J. Quantifying the severity of phytophthora root rot disease in avocado trees using image analysis. Remote Sensing, 2018; 10(2). DOI: 10.3390/rs10020226.
Copyright (c) 2018 International Journal of Agricultural and Biological Engineering