Classification of pepper seeds using machine vision based on neural network
Abstract
Keywords: pepper seed, neural networks, variety classification, computer vision
DOI: 10.3965/j.ijabe.20160901.1790
Citation: Kurtulmuş F, Alibas İ, Kavdır I. Classification of pepper seeds using neural network. Int J Agric & Biol Eng, 2016; 9(1): 51-62.
Keywords
Full Text:
PDFReferences
Chen X, Xun Y, Li W, Zhang J. Combining discriminant analysis and neural networks for corn variety identification. Computers and Electronics in Agriculture, 2010; 71: S48–S53.
Bae H, Jayaprakasha G K, Jifon J, Patil B S. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chemistry, 2012; 134: 1912–1918.
Alvarez-Parrilla E, de la Rosa L A, Amarowicz R, Shahidi F. Antioxidant activity of fresh and processed Jalapeño and serrano peppers. Journal of Agricultural and Food Chemistry, 2010; 59: 163–173.
Hervert-Hernández D, Sáyago-Ayerdi S G, Goñi I. Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility. Journal of Agricultural and Food Chemistry, 2010; 58: 3399–3406.
Jeong W Y, Jin J S, Cho Y A, Lee J H, Park S, Jeong S W, et al. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography–tandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. Journal of Separation Science, 2011; 34: 2967–2974.
Granitto P M, Navone H D, Verdes P F, Ceccatto H A. Weed seeds identification by machine vision. Computers and Electronics in Agriculture, 2002; 33: 91–103.
Paliwal J, Shashidhar N S, Jayas D S. Grain kernel identification using kernel signature. Transactions of the ASAE, 1999; 42: 1921–1924.
Chen X, Xun Y, Li W, Zhang J. Combining discriminant analysis and neural networks for corn variety identification. Computers and Electronics in Agriculture, 2010; 71(1): S48–S53.
Pourreza A, Pourreza H, Abbaspour-Fard M H, Sadrnia H. Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture, 2012; 83: 102–108.
Avila F, Mora M, Fredes C. A method to estimate Grape Phenolic Maturity based on seed images. Computers and Electronics in Agriculture, 2014; 101, 76–83.
Valiente-Gonzalez J M, Andreu-Garcia G, Potter P, Rodas-Jorda A. Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis. Biosystems Engineering, 2014; 117: 94–103.
Szczypiński P M, Klepaczko A, Zapotoczny P. Identifying barley varieties by computer vision. Computers and Electronics in Agriculture, 2015; 110, 1–8.
Chupawa P, Kanjanawanishkul K. Sweet Pepper Seed Inspection Using Image Processing Techniques. Advanced Materials Research, 2014; 931-932: 1614–1618.
Oliphant T E. Python for scientific computing. Computing in Science and Engineering, 2007; 9(3), 10–20.
Coelho L P. Mahotas: Open source software for scriptable computer vision. Journal of Open Research Software, 2013; 1(1): e3. doi: http://dx.doi.org/10.5334/jors.ac.
Walt S V D, Schönberger J L, Nunez-Iglesias J, Boulogne F, Warner J D, Yager N, et al. Scikit-image: Image processingin Python. PeerJ, 2014; 2:e453.
OpenCV. Open source computer vision. Available at: www.opencv.org. Accessed October 4, 2014.
Donis-González I R, Guyer D E, Leiva-Valenzuela G A, Burns J. Assessment of chestnut (Castanea spp.) slice quality using color images. Journal of Food Engineering, 2013; 115: 407–414.
Hu M K. Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory, 1962; 8(2): 179–187.
Chen Q, Petriu E, Yang X. A comparative study of Fourier descriptors and Hu’s seven moment invariants for image recognition. Electrical and Computer Engineering, Canadian Conference on 1, 2004; p103-106.
Teague M. Image analysis via the general theory of moments. Journal of the Optical Society of America, 1980; 70(8): 920–930.
Wang J, He J, Han Y, Ouyang C, Li D. An Adaptive Thresholding algorithm of field leaf image. Computers and Electronics in Agriculture, 2013; 96: 23–39.
Ding M Y, Chang J L, Peng J X. Research on moment invariant algorithm. Journal of Data Acquisition and Processing, 1992; 7(1): 1–9.
Wang X F, Huang D S, Du J X, Xu H, Heutte L. Classification of plant leaf images with complicated background. Applied Mathematics and Computation, 2008; 205(2): 916–926.
Haralick R M. Statistical and structural approaches to texture. Proc. IEEE, 1979; 67(5): 786–804.
Zhang J, Tan T, Ma L. Invariant texture segmentation via circular Gabor filters. 16th International Conference on Pattern Recognition (ICPR 2002), 11-15 August 2002, Quebec, Canada.
Kurtulmuş F, Lee W S, Vardar A. Green citrus detection using ‘eigenfruit’, color and circular Gabor texture features under natural outdoor conditions. Computers and Electronics in Agriculture, 2011; 78(2): 140–149.
Aghbashlo M, Mobli H, Rafiee S, Madadlou M. The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture, 2012; 88: 32-43.
Boniecki P, Koszela K, Piekarska-Boniecka H, Weres J, Zaborowicz M, Kujawa S, et al. Neural identification of selected apple pests. Computers and Electronics in Agriculture, 2015; 110: 9–16.
Kujawa S, Nowakowski K, Tomczak R J, Dach J, Boniecki P, Weres J, et al. Neural image analysis for maturity classification of sewage sludge composted with maize straw. Computers and Electronics in Agriculture, 2014; 109: 302–310.
Omid M, Mahmoudi A, Omid M H. An intelligent system for sorting pistachio nut varieties. Expert Systems with Applications, 2009; 36(9): 11528–11535.
Nazghelichi T, Aghbashlo M, Kianmehra M H. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture, 2011; 75(1): 84–91.
Wang W, Paliwal J. Generalisation performance of artificial neural networks for near infrared spectral analysis. Biosystems Engineering, 2006; 94(1): 7–18.
Beale M H, Hagan M T, Demuth H B. Neural Network Toolbox User's Guide. The MathWorks, Inc., 2014; Natick, MA, USA.
Craninx M, Fievez V, Vlaeminck B, De Baets B. Artificial neural network models of the rumen fermentation pattern in dairy cattle. Computers and Electronics in Agriculture, 2008; 60(2): 226–238.
Møller M F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 1993; 6(4): 525–533.
Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. Proceedings of the IEEE International Conference on Neural Networks, 1993; 1, p586–591.
Patnaik L M, Rajan K. Target detection through image processing and resilient propagation algorithms. Neurocomputing, 2000; 35(1–4): 123–135.
Santra A K, Chakraborty N, Sen S. Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network. International Journal of Thermal Sciences, 2009; 48(7): 1311–1318.
Heaton J. Introduction to Neural Networks for Java: Feedforward Backpropagation Neural Networks. Available at: http://www.heatonresearch.com/node/707. Accessed on [2014-10-04].
Priddy K L, Keller P E. Artificial Neural Networks: An Introduction (SPIE Tutorial Texts in Optical Engineering, Vol. TT68), The International Society for Optical Engineering, 2005; Bellingham, Washington, USA.
Nixon M S, Aguado A S. Feature Extraction and Image Processing. Elsevier, 2008; London, UK.
Copyright (c)