Object-based classification approach for greenhouse mapping using Landsat-8 imagery
Abstract
Keywords: greenhouse, mapping, Landsat-8, object-based classification, feature selection, multi-scale
DOI: 10.3965/j.ijabe.20160901.1414
Citation: Wu C F, Deng J S, Wang K, Ma L G, Tahmassebi A R S. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Int J Agric & Biol Eng, 2016; 9(1): 79-88.
Keywords
Full Text:
PDFReferences
Du X M, Wu Z H, Zhang Y Q, Pei X X. Study on changes of soil salt and nutrient in greenhouse of different planting years. J. Soils Water Conserv., 2007; 2: 019.
Agüera F, Aguilar F J, Aguilar M A. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS J. Photogrammetry Remote Sens., 2008; 63(6): 635–646.
Haack B, Bryant N, Adams S. An assessment of LANDSAT MSS and TM data for urban and near-urban land-cover digital classification. Remote Sens. Environ., 1987; 21(2): 201–213.
De Fries R S, Hansen M, Townshend J R G, Sohlberg R. Global land cover classifications at 8 km spatial resolution: the use of training data derived from LANDSAT imagery in decision tree classifiers. Int. J. Remote Sens., 1998; 19(16): 3141–3168.
Yuan F, Sawaya K E, Loeffelholz B C, Bauer M E. Land
cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multitemporal LANDSAT remote sensing. Remote Sens. Environ., 2005; 98(2–3): 317–328.
Xian G, Homer C, Fry J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using LANDSAT imagery change detection methods. Remote Sens. Environ., 2009; 113(6): 1133–1147.
Rodriguez-Galiano V F, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez J P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogrammetry Remote Sens., 2012; 67: 93–104.
Li J, Zhao G X, Li T, Yue Y D. Study on technique of extracting greenhouse vegetable information from LANDSAT TM image. J. Soils Water Conserv., 2004; 18(1): 126–129.
Ma Q. Land use information remote sensing extraction and effects of different land use on soil quality in greenhouse vegetable region. Master Dissertation. Shandong Agricultural University, 2011.
Carvajal F, Agüera F, Aguilar F J, Aguilar M A. Relationship between atmospheric corrections and training-site strategy with respect to accuracy of greenhouse detection process from very high resolution imagery. Int. J. Remote Sens., 2010; 31(11): 2977–2994.
Koc-San D. Evaluation of different classification techniques for the detection of glass and plastic greenhouses from WorldView-2 satellite imagery. J. Appl. Remote Sens., 2013; 7(1): 073553–073553.
Tarantino E, Aiello A. Plastic covered vineyard extraction from airborne sensor data with an object-oriented approach. In: Neale C M U, Maltese A, Richter K, ed. Proceedings of SPIE, International Society for Optics and Photonics, 2011; pp. 817415–817415
Agüera F, Liu J G. Automatic greenhouse delineation from QuickBird and Ikonos satellite images. Comput. Electron. Agric., 2009; 66(2): 191–200.
Roy D P, Wulder M A, Loveland T R, Woodcock C E, Allen R G, Anderson M C, et al. LANDSAT-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 2014; 145: 154–172.
Blaschke T. Object based image analysis for remote sensing. ISPRS J. Photogrammetry Remote Sens., 2010; 65(1): 2–16.
Han N, Du H, Zhou G, Sun X, Ge H, Xu X. Object-based classification using SPOT-5 imagery for Moso bamboo forest mapping. Int. J. Remote Sens, 2014; 35(3): 1126–1142.
Benz U C, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogrammetry Remote Sens., 2004; 58(3-4): 239–258.
Mitri G H, Gitas I Z. The development of an object-oriented classification model for operational burned area mapping on the Mediterranean island of Thasos using LANDSAT TM images. Forest Fire Research & Wildland Fire Safety, 2002: 1–12.
Geneletti D, Gorte B G H. A method for object-oriented land cover classification combining LANDSAT TM data and aerial photographs. Int. J. Remote Sens., 2003; 24(6): 1273–1286.
Mitri G H, Gitas I Z. A semi-automated object-oriented model for burned area mapping in the Mediterranean region using LANDSAT-TM imagery. Int. J. Wildland Fire, 2004; 13(3): 367–376.
Frohn R C, Reif M, Lane C, Autrey B. Satellite remote sensing of isolated wetlands using object-oriented classification of LANDSAT-7 data. Wetlands, 2009; 29(3): 931–941.
Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in LANDSAT imagery. Remote Sens. Environ., 2012; 118: 83–94.
Tarantino E, Figorito B. Mapping rural areas with widespread plastic covered vineyards using true color aerial data. Remote Sens., 2012; 4(12): 1913–1928.
Brower B V, Laben C A. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Google Patents, 2000.
Imaging D. eCognition Developer Software: 8.7.1. Reference Book. Raunheim:Trimble Germany GmbH, 2012.
Laliberte A S, Browning D M, Rango A. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery. Int. J. Appl. Earth Observation Geoinformation, 2012; 15: 70–78.
Novack T, Esch T, Kux H, Stilla U. Machine learning comparison between WorldView-2 and QuickBird-2- simulated imagery regarding object-based urban land cover classification. Remote Sens., 2011; 3(12): 2263–2282.
Su W, Li J, Chen Y, Liu Z, Zhang J, Low T M et al. Textural and local spatial statistics for the object‐oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens., 2008; 29(11): 3105–3117.
Gislason P O, Benediktsson J A, Sveinsson J R. Random forests for land cover classification. Pattern Recognit. Lett. 2006; 27(4): 294–300.
Breiman L. Random forests. Mach. Learn. 2001; 45(1): 5–32.
Livingston F. Implementing Breiman’s Random Forest Algorithm into Weka, 2005.
Löw F, Michel U, Dech S, Conrad C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS J. Photogrammetry Remote Sens., 2013; 85: 102–119.
Pal M, Mather P M. Support vector machines for classification in remote sensing. Int. J. Remote Sens., 2005; 26(5): 1007–1011.
Agüera F, Aguilar M A, Aguilar F J. Detecting greenhouse changes from QuickBird imagery on the Mediterranean coast. Int. J. Remote Sens., 2006; 27(21): 4751–4767.
Cai S, Liu D. A comparison of object-based and contextual pixel-based classifications using high and medium spatial resolution images. Remote Sens. Lett., 2013; 4(10): 998–1007.
Copyright (c)