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Abstract: Prevention and control of grape diseases is the key measure to ensure grape yield.  In order to improve the precision 

of grape leaf disease detection, in this study, Squeeze-and-Excitation Networks (SE), Efficient Channel Attention (ECA), and 

Convolutional Block Attention Module (CBAM) attention mechanisms were introduced into Faster Region-based 

Convolutional Neural Networks (R-CNN), YOLOx, and single shot multibox detector (SSD), to enhance important features and 

weaken unrelated features and ensure the real-time performance of the model in improving its detection precision.  The study 

showed that Faster R-CNN, YOLOx, and SSD models based on different attention mechanisms effectively enhanced the 

detection precision and operation speed of the models by slightly enhancing parameters.  Optimal models among the three 

types of models were selected for comparison, and results showed that Faster R-CNN+SE had lower detection precision, 

YOLOx+ECA required the least parameters with the highest detection precision, and SSD+SE showed optimal real-time 

performance with relatively high detection precision.  This study solved the problem of difficulty in grape leaf disease 

detection and provided a reference for the analysis of grape diseases and symptoms in automated agricultural production. 
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1  Introduction

 

Crop disease control is the best approach to the production of 

pollution-free vegetables, reducing loss and pesticide application in 

crop production, therefore, early prediction and prevention of 

disease are of key importance[1].  Affected by the environment, the 

grape may suffer from powdery mildew, brown blotch, and 

anthracnose, which seriously affect its yield and quality.  

Traditional grape disease detection method totally relies on 

planters’ experiences or experts’ guidance, having the defects of 

low speed and efficiency and poor real-time performance.  Since 

the disease-infected grape may have some spots on its leaves, 

image processing on grape leaves is generally used to identify and 

detect such diseases to provide guidance[2]. 

With the rapid development of artificial intelligence 

technology, vision techniques are widely used in the field of image 

processing of crop diseases[3], such as K-means clustering[4], 

Bayesian classification[5], support vector machines[6], genetic 

algorithms[7], radial basis functions[8], ensemble learning[9], and 

filter segmentation methods[10], which are used in crop disease 

classification studies.  However, crop disease classification and 

identification based on traditional methods require manual 
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selection of features and are subject to environmental factors.  The 

development of deep learning, especially the upgrading of 

Convolutional Neural Network (CNN) has greatly improved the 

automatic detection and identification technology of crop diseases. 

In recent years, an object detection algorithm based on CNN 

has presented its great advantage.  Object detection algorithm is 

widely applied in face recognition[11], navigation[12], road obstacle 

detection[13], pedestrian detection[14], fruit detection[15,16], and weed 

detection[17].  CNN can extract the high-dimensional image 

features of an object, and make it possible to detect crop leaf 

diseases by object detection algorithm under complicated 

background.  Hence, experts in China and abroad have conducted 

model researches on crop disease detection based on object 

detection algorithms.  For example, Fuentes et al.[18] completed 

object detection on the tomato disease dataset with the Faster 

Region-based Convolutional Neural networks (R-CNN), 

Region-based Fully Convolutional Networks (R-FCN), and 

Single Shot Multibox Detector (SSD) models, and concluded that 

the combined model of Faster R-CNN and VGG16 showed the 

highest disease detection rate.  Qiao et al.[19] detected the time 

serial images of grape leaves by Faster R-CNN, and realized 

dynamic detection of grape leaf diseases.  Li et al.[20] applied the 

improved Faster R-CNN in bitter gourd leave disease detection, 

and the model proved high robustness and efficiency.  Ye et 

al.[21] used the SSD model to realize crop disease detection based 

on self-built data set, achieving an average detection precision of 

83.90%.  Liu et al.[22] proposed an improved model based on 

MobileNetv2 and YOLOv3, which conducted early detection of 

grey speck disease of tomato.  The improved model has the 

advantages of small memory size, high detection precision, and 

fast identification. 

The studies above demonstrate the feasibility of detecting 

grape leaf diseases through object detection technology, however, 

the operation speed of existing models is low with low detection 
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precision, which seriously restricts the application of current grape 

detection technologies.  In order to further improve the efficiency 

and precision of grape disease detection, in this study, the attention 

mechanisms of Squeeze-and-Excitation Networks (SE), Efficient 

Channel Attention (ECA), and Convolutional Block Attention 

Module (CBAM) were integrated into the grape disease detection 

models of Faster R-CNN, YOLOx, and SSD, respectively, to 

strengthen concern for the diseases and improve the performance of 

the feature extraction network.  Experiments were carried out on 

the self-built grape disease dataset, and results showed that the 

Faster R-CNN, YOLOx and SSD models based on different 

attention mechanisms effectively enhanced the detection precision 

and operation speed by slightly increasing parameters.  The 

optimal models were selected among the three types of models for 

comparison, and results show that the Faster R-CNN+SE model 

presented low detection precision; the YOLOx+ECA model had 

the least parameters but achieved the highest detection precision; 

SSD+SE had the best real-time performance with high detection 

precision.  This research can provide a reference for the scientific 

formulation of prevention strategies for grape diseases. 

2  Materials and methods 

2.1  Experimental data 

The dataset in this study comes from the captured grape leaf 

disease images, and the samples in the dataset are the images of 

grape leaf diseases shot in the complicated background of real field 

environment.  The self-built dataset includes 2300 images of 

grape leaf diseases, covering six kinds of grape diseases, i.e., 

powdery mildew, anthrax, brown spot disease, gray mold, black 

pox, and downy mildew, as shown in Figure 1. 

 
a. Powdery mildew b. Anthracnose c. Brown blotch 

 
d. Botrytis e. Black pox f. Downy mildew 

 

Figure 1  Samples of six types of grape disease 
 

In this study, Gauss noise and random luminance methods are 

used to randomly process partial images to increase the richness of 

data samples in different sharpness and different light and shade 

conditions.  In this study, 2300 images of grape leaf disease were 

precisely labeled by LabelImg software, and the data set of 

PASCAL VOC format was generated.  In model training, the 

dataset was divided into a training set, a validation set, and a test 

set.  In this study, based on the 9:1 proportion, 2070 images of the 

training set and validation set and 230 images of the test set were 

generated.  Subsequently, based on the 9:1 proportion, 1863 

images of the training set and 207 images of the test set were 

generated.  The numbers of pictures of various diseases in the 

dataset are listed in Table 1. 

Table 1  The number of images of various diseases 

Disease types Graphics Training set Validation set Test set 

Powdery mildew 350 283 32 35 

Anthracnose 385 311 35 39 

Brown blotch 410 332 37 41 

Botrytis 370 300 33 37 

Black pox 405 329 36 40 

Downy mildew 380 308 34 38 
 

2.2  Models for grape leaf disease detection 

There are mainly two types of object detection based on CNN, 

one is the object detection method based on the regional proposal, 

which first obtains the candidate region, then divides the candidate 

region, namely, two-stage object detection, such as R-CNN[23], Fast 

R-CNN[24] and Faster R-CNN[25].  The other is the method without 

regional proposal, which is also called one-stage object detection.  

The method without regional proposal predicts the object’s position 

and properties by CNN on the whole image, and its typical 

algorithms include SSD[26] and YOLO series algorithm[27-31]. 

In this study, the Faster R-CNN model, YOLOx model, and 

SSD model were taken as the models for grape leaf disease 

detection, and the training flow chart of the models for grape leaf 

disease detection is shown in Figure 2.  Firstly, the selected grape 

leaf disease images were input.  Secondly, the classification 

features were extracted.  Finally, the Faster R-CNN model, 

YOLOx model, and SSD model were used to detect the disease, 

and the detection results were output.  In the whole process, the 

loss function was calculated by predicting the difference between 

the disease species and the actual disease species, and the Adam 

optimizer was used to optimize the final output result. 
 

 
Note: Faster R-CNN: Faster Region-based Convolutional Neural Network; SSD: 

Single Shot MultiBox Detector. 

Figure 2  Training flow chart of grape leaf disease detection model 
 

The Faster R-CNN model achieves end-to-end target detection, 

and the algorithm has high detection accuracy but low running 

speed; The YOLOx model runs fast, but it is not suitable for small 

target detection; The SSD model has higher detection accuracy and 

faster running speed, but algorithm training is excessively 

dependent on experience, and the performance of small target 

detection is still not as good as Faster R-CNN model.  The three 

models are described as follows: 

1) Faster R-CNN model: the model is composed of Feature 

Extraction Network, Region Proposal Network (RPN), and Region 

with Convolutional Neural Network Features (R-CNN), and its 

framework diagram is shown in Figure 3.  Grape leaf disease 

detection based on Faster R-CNN mainly includes the following 

four aspects: generation of the candidate region of grape leaf 

diseases, extraction of disease characteristics, disease 

categorization, and bounding box regression. 

2) YOLOx model: this model has the advantage of high 

operation speed and flexibility, and the YOLOx-Darknet53 

network was studied.  The framework diagram of the 
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YOLOx-Darknet53 is shown in Figure 4, which includes input end, 

Backbone network, Neck, and Prediction.  Compared with other 

YOLO series models, the YOLOx model updates YOLO Head into 

Decoupled Head in the part of Prediction, and updates Anchor 

Based method into Anchor Free method, at the same time, it adds 

the SimOTA method to do dynamic matching with the positive 

samples.  The updates above help improve the detection precision 

and speed of the models and effectively reduce the parameters of 

the models. 

 
Note: VGG: Visual Geometry Group. 

Figure 3  Framework diagram of Faster R-CNN 

 
Note: FPN: Feature Pyramid Networks. 

Figure 4  Framework diagram of YOLOx-Darknet53 

3) SSD model: the model learns from the anchors mechanism 

of the Faster R-CNN model and the regression mechanism of 

YOLO model, with the help of a small convolution kernel and 

multi-dimensional feature prediction methods, it has fast detection 

speed and high detection precision.  The framework diagram of 

SSD algorithm has two parts, as shown in Figure 5.  The first part 

is the front-end deep learning network model, which is used to 

extract the initial characteristics of the disease object and helps to 

improve the model’s ability to perceive the disease.  The second 

part is the back-end multi-scale feature detection network, which 

uses Cascaded neural networks to classify features of different 

scales to obtain the category and location information of the disease, 

and then adds the features of the low-layer convolutional layer to 

improve the detection precision of the model, and finally uses 

non-maximum suppression (NMS) to obtain the final detection 

results. 

 
Figure 5  Framework diagram of SSD 

2.3  Attention mechanism models 

In this study, SE channel attention mechanism, ECA efficient 

channel attention mechanism, and CBAM spatial attention 

mechanism are adopted.  The SE attentional mechanism model 

has the advantages of low complexity, fewer new parameters, and  

computation; The ECA attention mechanism is an improved 

version of SE attention mechanism, which is a lightweight channel 

attention module, the module adds little model complexity and has 

a significant improvement effect; The CBAM attention mechanism 

can improve network performance more effectively by connecting 

spatial domain and channel domain. 

1) SE channel attention mechanism.  SE channel attention 

mechanism extracts feature through the channel of CNN[32].  

Based on the method of feature recalibration, let the model do 

self-learning to capture the important information of each feature 

channel.  SE includes two processes, squeeze, and excitation, and 

its network structure is shown in Figure 6.  The squeeze process 

compresses the feature image based on spatial dimensions, while 

the excitation process is building a model on the correlation 

between feature channels after squeeze to obtain the importance of 

each channel, then excite the original feature images into 

corresponding channels. 
 

 
Note: SE: Squeeze-and-Excitation; FC: Fully Connected; ReLU: 

Rectified Linear Unit; H represents the height of images; W represents 

the width of images; C represents the number of channels of images; r is 

the reduction ratio of the spatial dimensions of images. 

Figure 6  SE network structure diagram 
 

2) Efficient channel attention (ECA) mechanism.  The 

efficient channel attention mechanism[33] is an updated version of 

SE and it realized the local cross-channel interaction strategies 

without dimensionality reduction and the self-adaptive method of 

selecting the size of the one-dimensional convolutional kernel.  It 

reduced the complexity of the module by improving the 

performance of the attention module.  The network structure of 

the efficient channel attention mechanism is shown in Figure 7. 

 
Note: ECA: Efficient Channel Attention. 

Figure 7  ECA network structure diagram 
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3) CBAM Spatial Attention Mechanism.  CBAM Spatial 

Attention Mechanism[34] is composed of Channel Attention Module 

(CAM) and Spatial Attention Module (SAM).  For the input 

feature map, CBAM infers the attention map on the channel and 

spatial dimensions and then multiplies the attention map and the 

imported feature map to achieve optimization of self-adaptive 

features.  The CBAM attention mechanism can enhance useful 

features in the input feature map while suppressing useless features 

and is widely used in practice.  The network structure of CBAM is 

shown in Figure 8. 

 
Note: CBAM: Convolutional Block Attention Module; CAM: Channel Attention Module; SAM: Spatial Attention Module; Conv: Convolution; 

MLP: Multilayer Perceptron.  Mc is the channel attention map. 

Figure 8  CBAM network structure diagram 
 

2.4  Grape leaf disease detection model based on attention 

mechanisms 

The introduction of SE attention mechanism in the disease 

detection model is more concerned about the channel features with 

the largest amount of information by suppressing the unimportant 

channel features; the introduction of ECA attention mechanism 

achieves appropriate cross-channel interaction, significantly 

reducing the complexity of the model while maintaining good 

performance; the introduction of CBAM attention mechanism 

makes the disease detection model consider the importance of 

different pixels and the importance of pixels in different positions 

in the same channel.  All three of these attention mechanisms can 

be seamlessly integrated into Section 3.1 grape leaf disease 

detection model, enabling end-to-end training. 

1) Faster R-CNN model based on different attention 

mechanisms 

The Faster R-CNN model uses CNN to extract disease features 

to get the feature image.  Due to the inherent locality of the 

convolution kernel, it can only retain local information of disease 

images rather than global information, causing information missing 

and reducing the detection precision of the Faster R-CNN model.  

To solve this problem and use the weight of transfer learning, under 

the premise of not changing feature extraction network structure by 

backbone features, SE, ECA, and CBAM attention mechanisms 

were introduced by forwarding propagation after the last Identity 

block to improve the model, to obtain the feature information that 

has high contribution rate to disease object in the images.  The 

framework diagram of the Faster R-CNN model based on different 

attention mechanisms is shown in Figure 9. 

2) YOLOx model based on different attention mechanisms 

Although YOLOx model has high detection speed with high 

detection precision, it has some disadvantages if it is directly 

applied to disease detection under complicated background.  For 

example, the backbone network has insufficient ability in 

extracting features and cannot effectively integrate high-quality 

contextual feature information, thus reducing the detection 

precision of the model.  Therefore, without changing the 

Darknet53 network structure of the YOLOx model, so that the 

weight of pre-training can be loaded directly in model training, in 

this study, based on the three output branches of the Backbone 

network Darknet53, SE, ECA, and CBAM attention mechanisms, 

the feature expression of each branch was enhanced to make the 

YOLOx model can selectively strengthen key features and 

effectively restrain useless features.  The framework diagram of 

YOLOx model based on different attention mechanisms is shown 

in Figure 10. 

 
Figure 9  Framework diagram of Faster R-CNN model based on different attention mechanisms 
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Figure 10  Framework diagram of YOLOx model based on 

different attention mechanisms 
 

3) SSD model based on different attention mechanisms 

It can be known from Section 3.1 that, the SSD model adopts 

multi-dimensional prediction method, and the front-end deep 

learning network detects small objects, while the rear-end 

multi-dimensional feature detection network detects big objects.  

The front-end deep learning network includes abundant geometric 

information and accurate positioning information, but the receptive 

field is small with the weak representational ability of semantic 

information.  Relatively speaking, the rear-end multi-dimensional 

feature detection network has a relatively broad receptive field and 

semantic information with strong representational ability, however, 

the network resolution is low, and the representational ability in 

geometric information is low.  Therefore, there might be 

information missing or errors in detecting diseases by SSD model.  

To solve this problem, 6 feature images with different sizes were 

extracted from the SSD model and input into the SE, ECA, and 

CBAM attention modules to screen out disease object features, to 

enhance the feature images' representational ability in key feature 

information and improve the detection precision of SSD model on 

disease objects.  The framework diagram of SSD model based on 

different attention mechanisms is shown in Figure 11. 

 
Figure 11  Framework diagram of SSD model based on different 

attention mechanisms 

3  Experiment and analysis 

3.1  Evaluation indexes 

In this study, the commonly used target detection evaluation 

criteria are used to evaluate the detection results.  Commonly used 

evaluation criteria include Precision (P), Recall (R), P-R curve, 

Average Precision (AP) for a single class of targets, and Mean 

Average Precision (mAP) for all classes.  In this study, P, R, 

comprehensive evaluation index F1 value (F1 value is equivalent to 

the harmonic mean of the precision and recall), mAP, Frames Per 

Second (FPS), and parameters were adopted to evaluate the 

detection results. rape leaf disease detection model. 

The calculation equations of P, R, and F1 are Equations (1)-(3), 

respectively.  

TP
100%

TP FP
P  


               (1) 

TP
100%

TP FN
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
               (2) 

2
F1

P R

P R

 



                  (3) 

where, P is the precision of the results, %; TP is the probability that 

positive samples are correctly detected; FP is the probability that 

negative samples are detected as positive samples; R is the recall of 

the results, %; FN is the probability that positive samples are 

detected as negative samples; F1 is the equivalent to the harmonic 

mean of the precision and recall, %.  The higher TP value is, the 

more accurate the prediction and the better the performance of the 

model. 

mAP (%) is the result of averaging the average precision AP of 

all diseases, it can measure a model's performance on all kinds of 

diseases.  The definition of average precision AP is shown in 

Equation (4), and the definition of mAP is shown in Equation (5). 
1

0
AP dPR R                     (4) 

1

1
mAP AP

N

mmN 
                 (5) 

where, N is the number of kinds of diseases, N=6; APm is the 

average precision of the m-th kind of disease. 

FPS represents the number of images processed per second.  

The higher FPS is, the faster the identification speed of the 

algorithm. 

3.2  Experiment platform and parameter setting 

The experiment uses the Windows 10 operating system, the 

computer is equipped with 16 GB of memory, using Pytorch 1.10.1 

as a deep learning framework, and the hardware configuration and 

model parameters related to the experiment are listed in Table 2. 
 

Table 2  Test related hardware configuration and model 

parameters 

Name Configuration Name Taking values 

GPU RTX3070Ti Size of images 640×640 

CPU 
AMD Ryzen 7 5800X @ 

3.8GHz 
Learning rate 0.001 

CUDA 11.3 Optimizer Adam 

CuDNN 8.2.1 Batch size 16 

Note: CUDA: Compute Unified Device Architecture; CuDNN: NVIDIA 

CUDA® Deep Neural Network 
 

3.3  Experiment results and analysis 

Keeping the configuration information and training platform 

unchanged, the Faster R-CNN model, the YOLOx model, and the 

SSD model based on different attention mechanisms were 

compared with the classical models, Faster R-CNN, YOLOx, and 

SSD, all of which were trained and detected on the same grape 

disease dataset. 

1) Experimental result analysis of the Faster R-CNN model 

based on different attention mechanisms 

The Faster R-CNN model integrated with SE attention 

mechanism is simply called Faster R-CNN+SE, the Faster R-CNN 

model integrated with ECA attention mechanism is called Faster 

R-CNN+ECA, and the Faster R-CNN integrated with CBAM 

attention mechanism is called Faster R-CNN+CBAM.  In the 
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same experiment environment, Faster R-CNN+SE, Faster 

R-CNN+ECA, Faster R-CNN+CBAM, and Faster R-CNN were 

adopted for disease detection on the grape disease dataset, the 

experiment results are listed in Table 3. 
 

Table 3  Performance comparison of Faster R-CNN models 

based on different attention mechanisms 

Model P/% R/% F1/% mAP/% FPS 
Size of 

parameters/MB 

Faster R-CNN 75.06 74.42 74.74 79.12 13.16 522.91 

Faster R-CNN+SE 79.80 84.23 81.96 85.39 13.22 523.04 

Faster 

R-CNN+ECA 
76.54 78.71 77.61 81.93 13.18 522.91 

Faster 

R-CNN+CBAM 
75.75 75.89 75.82 79.65 13.20 523.41 

Note: P is the precision; R is the recall; F1 is the harmonic mean of the precision 

and recall; FPS is the frames per second.  Faster R-CNN: Faster Region-based 

Convolutional Neural Network; SE: Squeeze-and-Excitation; ECA: Efficient 

Channel Attention; CBAM: Convolutional Block Attention Module. 
 

It is shown from Table 3 that, compared with Faster R-CNN, 

the P, R, and F1 values of the Faster R-CNN+SE model were 

increased by 4.74%, 9.81%, and 7.22%, mAP increased by 6.27%, 

FPS increased by 0.06, the increase of attention modules on the 

network structure increased the number of parameters by 0.13 MB.  

Compared with Faster R-CNN, the P, R, and F1 values of the 

Faster R-CNN+ECA model increased by 1.48%, 4.29%, and 2.87%, 

respectively, mAP increased by 2.81%, FPS value increased by 

0.02, and parameters kept unchanged.  Compared with Faster 

R-CNN, the P, R, and F1 values of the Faster R-CNN+CBAM 

increased by 0.69%, 1.47%, and 1.08%, respectively, mAP 

increased by 0.53%, and FPS value increased by 0.04, and the 

added attention module increased parameters by 0.5 MB. 

It can be seen from the above analysis that, although the 

parameters of Faster R-CNN+SE and Faster R-CNN+CBAM 

increased slightly, the performance of the three models after the 

introduction of attention mechanisms was better than that of the 

original Faster R-CNN.  The reason is the introduction of 

attention mechanism can help obtain the feature information with 

high contribution rates to the disease object in the disease images, 

improve the detection precision, and accelerate the detection speed. 

Among the three models introduced with attention mechanisms, 

Faster R-CNN+SE showed the optimal detection effect.  

Compared with Faster R-CNN+ECA, the P, R, and F1 values of the 

Faster R-CNN+SE model increased by 3.26%, 5.52%, and 4.35%, 

respectively, mAP increased by 3.46%, FPS value increased by 

0.04, parameters increased by 0.13 MB.  Compared with Faster 

R-CNN+CBAM, the P, R, and F1 values of the Faster R-CNN+SE 

increased by 4.05%, 8.34%, and 6.14%, respectively, the FPS value 

increased by 0.18, and parameters reduced by 0.37 MB. 

Comprehensively considering the detection precision and 

operation speed of the models, the Faster R-CNN+SE model 

presented the optimal robustness by slightly increasing parameters, 

and it pays more attention to the channel features with the largest 

amount of information and suppresses unimportant channel 

features, showing ideal detection effect in grape disease dataset. 

2) Experimental result analysis of the YOLOx model based on 

different attention mechanisms 

The YOLOx model introduced with SE attention mechanism is 

YOLOx+SE for short; the YOLOx model introduced with ECA 

attention mechanism is YOLOx+ECA for short; the YOLOx model 

introduced with CBAM attention mechanism is YOLOx+CBAM 

for short.  Under the same experimental environment, 

YOLOx+SE, YOLOx+ECA, YOLOx+CBAM, and YOLOx were 

adopted to detect the diseases on the grape disease dataset, and the 

experimental results are shown in Table 4. 
 

Table 4  Performance comparison of Faster YOLOx models 

based on different attention mechanisms 

Model P/% R/% F1/% mAP/% FPS 
Size of 

parameters/MB 

YOLOx 82.35 74.85 78.42 83.22 68.34 34.21 

YOLOx+SE 82.46 82.21 82.33 84.02 68.88 34.38 

YOLOx+ECA 87.77 86.07 86.91 88.66 73.68 34.87 

YOLOx+CBAM 85.81 77.91 81.67 84.21 71.88 34.21 
 

As can be seen from Table 4, compared with YOLOx, the P, R, 

and F1 values of the YOLOx+SE model increased by 0.11%, 

7.36%, and 3.91%, respectively, the mAP increased by 0.8%, the 

FPS value increased by 0.54, and the increase of the attention 

module on the network structure increased the parameter amount 

by 0.17 MB; compared with YOLOx, the precision P, recall R, and 

F1 values of the YOLOx+ECA model increased by 5.42%, 11.22%, 

and 8.49%, respectively.   mAP increased by 5.44%, FPS value 

increased by 5.34, and parameters increased by 0.66 MB.  

Compared with YOLOx, the P, R, and F1 values of the 

YOLOx+CBAM model increased by 3.46%, 3.06%, and 3.25%, 

respectively, mAP increased by 0.99%, FPS value increased by 

3.54, and the parameters kept unchanged. 

From the above analysis, it can be obtained that although the 

parameters of the YOLOx+SE model and the YOLOx+ECA model 

have increased slightly, the detection indexes of the three YOLOx 

models introduced with attention mechanisms were higher than 

those of the original YOLOx.  The reason is that the introduction 

of attention mechanisms enabled the models to extract more 

comprehensive and rich features, and the model paid more attention 

to disease objects, thus increasing detection precision. 

Among all models, the YOLOx+ECA model proved the 

optimal detection effect.  Compared with YOLOx+SE, the P, R, 

and F1 values of the YOLOx+ECA model increased by 5.31%, 

3.86%, and 4.58%, respectively; mAP increased by 4.64%, FPS 

value increased by 4.8, and parameters expanded by 0.49 MB.  

Compared with YOLOx+CBAM, the P, R, and F1 values of the 

YOLOx+ECA model increased by 1.96%, 8.16%, and 5.24%, 

respectively, mAP increased by 4.45%, FPS value increased by 1.8, 

parameters expanded by 0.66 MB. 

In conclusion, compared with the other three models, although 

the YOLOx+ECA model had more parameters, it realized 

cross-channel interaction on the grape disease dataset to some 

extent and could achieve optimal detection results at a fast 

operation speed. 

3) Experimental results of the SSD model based on different 

attention mechanisms 

The SSD model introduced with SE attention mechanism is 

SSD+SE for short; the SSD model introduced with ECA attention 

mechanism is SSD+ECA for short; the SSD model introduced with 

CBAM attention mechanism is SSD+CBAM for short.  Keeping 

the experimental conditions unchanged, the SSD+SE, SSD+ECA, 

SSD+CBAM, and SSD models were used to detect diseases on the 

grape disease dataset, and the experiment results are listed in Table 

5. 

Table 5 shows that, compared with SSD, the P, R, and F1 

values of the SSD+SE model increased by 2.72%, 15.23%, and 

9.45%, respectively, mAP increased by 10.73%, FPS value 

increased by 63.08, parameters expanded by 0.85 MB.  Compared 

with SSD, the P, R, and F1 values of the SSD+ECA model 

increased by 1.35%, 8.77%, and 5.47%, respectively, mAP 
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increased by 6.67%, FPS went up by 0.55, and parameters kept 

unchanged.  Compared with SSD, the P, R and F1 values of the 

SSD+CBAM increased by 0.94%, 3.61%, and 2.48%, respectively; 

mAP increased by 4.91%, FPS value increased by 8.47, parameters 

expanded by 3.38 MB. 
 

Table 5  Performance comparison of SSD models based on 

different attention mechanisms 

Model P/% R/% F1/% mAP/% FPS 
Size of 

parameters/MB 

SSD 80.74 68.87 74.33 76.23 67.69 99.76 

SSD+SE 83.46 84.10 83.78 86.96 130.77 100.61 

SSD+ECA 82.09 77.64 79.80 82.90 68.24 99.76 

SSD+CBAM 81.68 72.48 76.81 81.14 76.16 103.14 

Note: SSD: Single Shot MultiBox Detector. 
 

Therefore, the increase of attention modules in a network 

structure expanded the parameters of the SSD+SE and 

SSD+CBAM models, and the three models could effectively 

position the interesting information in the feature images based on 

the importance of the features and restrain useless information.  

Thus, other detection indexes of the three models introduced with 

attention mechanisms were better than that of the SSD model. 

Among the four models, the SSD+SE model proved the 

optimal detection effect, and the detection speed of this model was 

significantly faster than the other three models, showing optimal 

real-time performance.  Compared with SSD+ECA, the P, R, and 

F1 values of SSD+SE increased by 1.37%, 6.46%, and 3.98%, 

respectively, mAP increased by 4.64%, FPS value increased by 

63.63, and parameters expanded by 0.85 MB.  Compared with 

SSD+CBAM, the P, R, and F1 values of SSD+SE increased by 

1.78%, 11.62%, and 6.97%, respectively, mAP increased by 5.82%, 

FPS increased by 71.55, while parameters reduced by 2.53 MB. 

The experimental results above showed that, since SE attention 

mechanism could optimize feature images, in terms of both 

detection precision and speed, SSD+SE was significantly better 

than the other three models, and it proved better comprehensive 

performance.  Thus, it can be applied in the real-time detection of 

grape diseases. 

4) Comparison analysis of the detection effect of the three 

optimal models after screening 

The analysis above shows that Faster R-CNN+SE was the 

optimal model of Faster R-CNN based on different attention 

mechanisms.  YOLOx+ECA was the optimal model of YOLOx 

based on different attention mechanisms.  SSD+SE was the 

optimal model of SSD based on different attention mechanisms.  

In order to present the disease detection performance of each model, 

images were selected randomly in the experiment.  By keeping the 

experimental environment unchanged, the three optimal disease 

detection models were screened for comparison, and the results are 

shown in Figure 12. 

It can be found after observing the detection results of Image2, 

Image3, and Image4 that, Faster R-CNN+SE and SSD+SE had 

cases of information leakage when the two diseases had high 

contact ratios.  For example, Faster R-CNN+SE in Image2 missed 

the disease information on the upper left; Faster R-CNN+SE in 

Image3 and SSD+SE missed the disease information in the middle 

part; Faster R-CNN+SE in Image4 missed the disease information 

in small spots in the middle; Faster R-CNN+SE and SSD+SE in 

Image3 took brown blotch as anthracnose of grape.  Compared 

with the other two models, YOLOx+ECA successfully detected 

small disease spots in Image3 and Image4, without any information 

missing or errors. 

 
 a. Faster R-CNN 

+SE 

b. YOLOx+ECA c. SSD+SE 

 

Figure 12  Comparison of different model results 
 

In general, among the three models of Faster R-CNN+SE, 

YOLOx+ ECA, and SSD+SE, the detection precision of Faster 

R-CNN+SE was the lowest at a low operation speed with the most 

parameters; SSD+SE had the fastest operation speed with high 

precision, thus it can be applied in real-time detection of field grape 

diseases; YOLOx+ECA had the highest detection precision with 

the least parameters, and it effectively enhanced the detection rate 

of small objects and objects under occlusion, showing strong 

robustness. 

4  Conclusions 

1) In view of the low detection precision of the Faster R-CNN 

model, the three attention mechanisms of SE, ECA, and CBAM 

were introduced in this study on the basis of the original model.  

Experimental results showed that the P, R, and F1 values of Faster 

R-CNN+SE, Faster R-CNN+ECA, and Faster R-CNN+CBAM 

were all higher than that of Faster R-CNN.  With the increase of 

the attention module, the parameters increased a little.  Among the 

models above, Faster R-CNN+SE proved the optimal detection 

effect in the grape disease dataset. 

2) In order to overcome the defect of low precision under 

different environments, three attention mechanisms of SE, ECA, 

and CBAM were introduced to the YOLOx model.  Experimental 

results showed that the P, R, F1, mAP, and FPS values of 

YOLOx+SE, YOLOx+ECA, and YOLOx+CBAM after introduced 

with attention mechanisms were all higher than that of YOLOx, 

and the parameters increased slightly.  Among the four models, 

YOLOx+ECA demonstrated the fastest speed and optimal 

performance. 

3) In order to avoid information missing or errors in disease 
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detection, the attention mechanisms of SE, ECA, and CBAM were 

introduced to the SSD model.  Experimental results showed that 

the P, R, F1, mAP, and FPS values of SSD+SE, SSD+ECA, and 

SSD+CBAM were all higher than that of SSD, and the parameters 

expanded slightly.  Among the four models, the detection speed of 

SSD+SE was significantly faster than that of the other three models, 

and its detection performance was the best. 

4) Comparison analysis was carried out on the three optimal 

models of Faster R-CNN+SE, YOLOx+ECA, and SSD+SE, and 

results showed that Faster R-CNN+SE had lower detection 

precision with more parameters; YOLOx+ECA had the least 

parameters but the highest detection precision; SSD+SE showed 

optimal real-time performance with relatively high detection 

precision. 
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