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Abstract: Rapid detection of foodborne pathogens is a key step in the control of food related diseases.  Conventional methods 

for the detection of food pathogens, although typically sensitive, often require multiple time-consuming steps such as extraction, 

isolation, enrichment, counting, etc., prior to measurement, resulting in testing times which can be days.  There is a need to 

develop rapid and sensitive detection methods.  This review is intended to provide food scientists and engineers an overview of 

current rapid detection methods, a close look at the nanoparticles especially magnetic nanoparticle-antibody conjugates based 

methods, and identification of knowledge gaps and future research needs. 
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1  Introduction 

According to the 2011 publication by the Foodborne 

Diseases Active Surveillance Network (FoodNet) of US 

Center for Disease Control and Prevention (CDC), 

foodborne diseases caused 1 in 6 Americans (or 48 

million people) sick, 128 000 hospitalizations, and 3 000 

deaths of foodborne diseases.  Majority of the death was 

caused by Salmonella, Listeria, E. coli O157:H7 and 
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Toxoplasma.  The number of food product recalls by the 

USDA Food Safety and Inspection Service (FSIS) due to 

safety hazard reasons, mostly due to the presence of 

food-borne pathogens, were 70 and 96 in 2011 and 2012, 

respectively, accounting for thousands of tons of foods.

 

A key step in foodborne pathogen control is to 

effectively detect pathogens along food production and 

processing line in a timely manner.  Portable, rapid and 

sensitive methods for real-time microbial detection and 

source identification would be welcome by or benefit 
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producers, processors, distributors, regulators, and 

consumers.  Food producers and processors can use 

rapid detection methods to screen raw materials, 

ingredients and finished products quickly for quality and 

safety control at the production and processing facility to 

insure fast release of product lots, short reaction time to 

necessary corrective actions, and saving money and 

labors.  Distributors and regulators can use rapid 

detection methods to conduct on spot exams.  Of course, 

this will help reduce and prevent foodborne diseases 

which claim thousands of lives and cost $6.5 to $34.9 

billion annually, a benefit to the consumers and the 

industries.  

There are strong needs for rapid and sensitive 

detection methods.  Conventional methods for the 

detection of food pathogens, although typically sensitive, 

often require multiple time-consuming steps such as 

extraction, isolation, enrichment, counting, etc., prior to 

measurement, resulting in testing times which can be 

days.  Therefore, the development of rapid and sensitive 

detection methods is gaining momentum.  Many rapid 

detection methods, particularly those based on biosensors, 

have been developed and studied. However, there are a 

number of limitations of these methods: (1) low 

specificity and sensitivity, (2) high susceptibility to food 

components, (3) substantial sample preparation, and (4) 

difficulty with in-field, continuous and routine analysis of 

large numbers of samples.  This review is intended to 

provide food scientists and engineers an overview of 

current rapid detection methods, a close look at the 

nano-particles based methods, and identification of 

knowledge gaps and future research needs.  

2  Conventional fast detection methods 

Conventional methods to detect foodborne pathogens 

rely on time-consuming and labor intensive procedures 

such as extraction, isolation, enrichment, counting, etc., 

which could take days. Many “rapid methods” have been 

developed in the last two decades.  There is no 

commonly agreed definition of “rapid methods”, They 

may include a vast array of methods such as miniaturized 

biochemical kits, antibody- and nuclear acid-based assays, 

and modified conventional tests
[1-5]

.  Swaminathan and 

Feng provide an excellent review of rapid detection 

methods with tabulated lists of major categories
[6,7]

. 

2.1  Miniaturized biochemical kits  

This method is similar to conventional methods in 

principles, i.e., they identify bacteria based on their 

biochemical characteristics.  They used smaller physical 

devices and concentrated bacteria isolates and therefore 

significantly reduced the time.  Their accuracy is about 

90%-99% of that of conventional methods
[1,8,9]

.  Most of 

the efforts were designed to identify a group or species of 

gram-negative enteric bacteria, but there are also kits for 

the identification of non-Enterobacteriaceae including 

Campylobacter, Listeria, anaerobes, non-fermenting 

gram-negative bacteria and for gram-positive bacteria.  

Miniaturized kits usually require 18-24 h incubation 

before reading, and pure culture isolates of bacteria. 

2.2  Antibody based arrays 

The antibody based arrays utilize the specificity of 

antigen-antibody reaction to identify targeted bacteria via 

immunoassays.  These immunoassays target specific 

proteins or carbohydrate moieties unique to the pathogen.  

The antibody based immunoassays can be classified into 

immunofluorescent assays, enzyme-linked 

immunosorbent assays (ELISA) and Western blot 

analyses
[10]

.  These methods use antibodies to “label” 

targeted bacteria and then use different instruments to 

measure the concentration of bacteria directly or 

indirectly with or without separation.  Many of these 

methods are very successful in clinical diagnosis. 

However, these techniques require sophisticated 

instruments to prepare and to read the results, thus 

limiting its application in ordinary food company 

laboratories, not to say on field or on the spot tests.  In 

addition, most of these methods require enrichment step 

to obtain reliable reading. Some methods are limited by 

the specificity, and interference from food components 

(e.g., autofluorescent compounds in foods).  Further 

understanding of microorganisms’ response to antibodies, 

food matrix, antigen expression and optimization with 

real-world samples to improve specificity and robustness 

of these methods
[11]

.   

2.3  Nuclear acid-based assays  

The nuclear acid-based assays or DNA-based assays  
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rely on Polymerase Chain Reaction (PCR) tests.  The 

PCR tests are designed to identify DNA segments 

corresponding to an organism’s genome.  The nuclear 

acid-based assays are highly sensitive and selective.  

However, the technical limitations and costs of these 

methods are too large for them to be widely used even in 

the clinical diagnosis
[12]

, not to say in the food industry at 

this point.  Most of DNA hybridization assays have a 

detection threshold in the range of 104-105 bacteria cells 

and thus targeted bacteria must be selectively enriched 

before the assays could be applied.  These methods may 

take one to two days.  They also require undamaged 

microbial DNA and have to be performed in a laboratory 

setting by experienced personnel and expensive 

instrumentation and reagents.  

In summary, despite the many advantages of the 

above discussed rapid detection methods, they are still 

faceing  many challenges including low specificity and 

sensitivity, high susceptibility to food components, 

substantial sample preparation, high costs, and difficulty 

with on-field, continuous and routine analysis of large 

numbers of samples. 

3  Magnetic nanoparticle sensors 

Nanoparticles are very fine particles with sizes 

between 1 and 100 nanometers. Because nanoparticles are 

between bulk materials and atomic or molecular 

structures, they often exhibit size related properties of 

great scientific interests.  Nanoparticles have found use 

in biology and medicine fields
[13,14]

, including pathogen 

detections.  Kaittainis et al.
[12]

 provided an excellent 

review on the applications of nanoparticles in the clinical 

identification of microbial pathogenesis.  As the 

nanotechnology-based systems are made more affordable, 

robust and reproducible, they are becoming practical tools 

for many non-clinical applications and suitable in rural 

areas of developing nations.  Nanotechnology based 

assays can be conducted in opaque media, like blood and 

milk, without any sample preparation, providing fast and 

reliable results in simple and user-friendly formats
[12]

. 

Nanoparticles are usually used either as labels or 

separation aids or both in pathogen detection procedures 

because of the unique optical, electrical, or magnetic 

properties.  When they are coupled with affinity ligands, 

they exhibit additional biological, biochemical, and 

physical properties which may be useful for pathogen 

binding and signal emitting.  Detection methods range 

from color based
[2,15]

 to fluorescence based
[16]

, from 

immunology based to PCR based
[17]

 tests.  By varying 

the structural parameters (e.g., size, composition, 

self-assembly and binding) of nanoparticles, their 

electronic, spectroscopic (emissive, absorptive), light 

scattering and conductive properties can be modified
[18]

 

to produce different response patterns unique to particular 

type of interaction of the nanoparticle with the 

pathogen
[12]

. 

Magnetic nanoparticles (MNP) have been widely used 

in clinic and molecular biology laboratories
[8,12,18]

.  For 

example, superparamagnetic nanoparticles have been 

utilized as contrast agents for magnetic resonance 

imaging (MRI)
[19-23]

.  They are also used in enzyme 

immobilization, protein purification, and food analysis
[24]

.  

Magnetic nanoparticles conjugated to antibodies have 

been used for the immunomagnetic separation of nucleic 

acids, proteins, viruses, bacteria and cells
[13,14,25-30]

.  Li 

and his co-workers
[28]

 used magnetic nanoparticle- 

antibody conjugates to separate E. coli O157:H7 in 

ground beef samples.  MNP-protein and MNP-microbe 

assemblies can also be used in other in vivo applications, 

such as tissue repair, immunoassay, detoxification of 

biological fluids, hyperthermia, drug delivery, and cell 

separation
[27,28,31-35]

.  

Recently, interactions between magnetic 

nanoparticles conjugates and bacteria are used for 

identification and quantification of mRNA, DNA, and 

pathogenic microorganisms.  Detection of signals and 

signal changes caused by the addition of magnetic 

nanoparticles to the pathogen containing matrix may be 

achieved by using magnetometers or superconducting 

quantum interference device (SQUID), magnetic 

relaxometers and magnetic resonance imaging
[36-41]

.  Li 

and his co-workers used magnetic nanoparticles 

conjugated with streptavidin or antibodies as “mass 

enhancers” to amplify frequency change in E. coli 

O157:H7 as detected by a quartz crystal microbalance 

(QCM) DNA sensor
[42,43]

.  Figure 1 illustrates the 
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preparation of conjugates of magnetic nano-particles 

(MNP) and pathogen-specific antibodies and formation of 

pathogen-induced nano-assembly. 

 

Figure 1  Preparation of conjugates of magnetic nano-particles (MNP) and pathogen-specific antibodies and formation of pathogen-induced 

nano-assembly.  The formation of the nano-assembly causes changes in certain properties such as electronic, spectroscopic (emissive, 

absorptive), light scattering and conductive properties which can be detected with corresponding instruments 

 

In nuclear magnetic resonance (NMR) technical term, 

the aggregated paramagnetic nanopartilces can dephase 

the spins of surrounding water protons more efficiently 

than MNPs present as the dispersed state and thus 

decrease the spin-spin relaxation time T2
[44]

.  The 

changes in T2, i.e., T2, can be correlated to the 

concentration of the pathogens bond to the antibodies of 

the MNPs.  Figure 2 shows an example of detection of 

herpes simplex virus (HSV) using a nano-sensor 

composed of superparamagnetic iron oxide core caged 

with a dextran coating onto anti-HSV-1 antibodies. 

 

Figure 2  Linearity between number of pathogens  

(herpes simplex virus, HSV) and T2
[41] 

 

Several researchers studied the relaxation properties 

of biological samples as affected by magnetic 

nanoparticles
[34-35,45]

.  The interactions between bacteria 

and magnetic nanoparticle-antibody conjugates make 

magnetic nanoparticle a very sensitive bacterial probe.  

Bacteria’s size is in the range of 0.2-10 microns. Addition 

of even a few bacteria will induce the assembly of the 

nanoparticles on the bacterial surface, resulting in 

significant changes in the T2.  Thus, a very low 

concentration of bacteria can be quantified
[37]

. 

Perez et al.
[35]

 reported that magnetic nanoparticles 

can be used as magnetic relaxation switches for sensing 

molecular interactions detectable with nuclear magnetic 

resonance techniques such as NMR spectroscopy and 

magnetic resonance imaging (MRI).  This provides a 

principle to relate T2 changes to the concentration of 

MNPs and hence the number of microbes attached to the 

MNPs.  This principle was demonstrated for detection of 

a number biological agents including biomolecules, 

bacteria and virus
[34,35,39-41,45-47]

.  

It should be noted that low field NMR spectrometers 

are relatively cheap compared with most of the 

instruments for immunoassays.  Many small to large 

food companies can afford to buy low field NMR 

instruments.  Therefore, nano-sensors using NMR 

relaxometry as the detection method have the potential to 

be practically implemented by food manufacturers of any 

sizes. 
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4  Knowledge gaps and further research needs 

The development of MNP based detection methods is 

still in its early stage and the factors affecting the 

sensitivity, specificity, and operation of MNP based 

detection methods for food safety assurance have not 

been carefully examined and optimized.  The complex 

food matrices present significant challenges
[48]

. 

4.1  Selection and preparation of MNPs 

The sensitivity of the method relies on the magnitude 

of T2 change (T2) as a result of the interactions between 

the targeted bacteria and MNP conjugates.  First the 

magnetic anisotropy and moment is a function of type of 

magnetic metal, size, and shape.  Magnetic anisotropy 

and moment may be enhanced by a decreasing particle 

size, probably attributed to an increasing surface to 

volume ratio
[49,50]

.  Selection and preparation of MNPs 

will therefore affect their magnetic properties.  Second, 

the magnetic anisotropy and moment is also affected by 

the surface modifications often necessary to enhance 

stability of and add surface functionality to MNPs.  For 

example, the iron oxide core can be coated with polymers, 

such as dextran, polyacrylic acid and silica.  Such 

surface modifications will affect the magnetic properties 

of the MNPs
[51]

.  Preparation conditions such as the time 

of addition of the polymer, temperature and the use of 

particular capping agents also affect the magnetic 

properties
[36]

.  Therefore, attentions must be paid to 

selection of MNPs and coatings and optimization of 

preparation procedures.  

4.2  Selection of antibodies and methods to prepare 

NMP-antibody conjugates 

Selection of antibodies and methods to conjugate 

antibodies to MNPs should also be examined because the 

properties of the MNP-antibody conjugates will certainly 

have a profound impact on the affinity between the 

conjugates and targeted bacteria.  Another related issue 

is that when the number of bacteria is relatively high and 

the organic ligands (antibodies) conjugated on MNPs are 

limited, the low valency nanoparticles would switch to a 

quasi-dispersed state due to their limited interaction with 

targeted bacteria, resulting in smaller changes in the ΔT2 

at high cell concentrations
[52]

.  Although the number of 

bacteria in fresh and processed foods without enrichment 

is not expected to be very high, a careful study must be 

conducted to determine some sort of critical ratios of 

bacteria to MNP conjugates for given conditions (bacteria 

type, food matrix, MNP conjugates, etc.). 

4.3  NMR and MRI methodologies 

Finally, very little has been done to optimize the 

NMR and MRI methodologies for such immunoassay 

based detection method.  Relaxometry is method 

dependent.  The representativeness of the data is 

dependent on the data acquisition techniques including 

pulse sequences and instrument parameters
[53]

.  A 90 

degree pulse will allow us to acquire relatively short T2 

while a CPMP pulse sequence can detect longer T2.  An 

inversion recovery pulse sequence will allow us to 

acquire spin-lattice relaxation time T1, which provides 

information on the interactions between the magnetic 

moments and the environment.  No study has used T1 to 

quantify the interactions between MNPCs and targeted 

bacteria.  More work is needed to understand the 

significance of T1 as well as the interactions between T1 

and T2.  Recently, a new NMR technique “2D NMR 

relaxometry” has been developed, which enables 

researchers to acquire T1 and T2 simultaneously and 

delineate the interactions between T1 and T2 and their 

relationship to certain physiochemical properties
[54,55]

.  

Application of 2D NMR relaxometry in the study of 

MNP based bacteria detection method is expected to 

improve data acquisition, analysis, and interpretation.  

Furthermore, the analysis of the data is even more 

method dependent and experience driven
[53]

.  Several 

models, including single component model, discrete 

multi-component model, and continuous distribution 

model have been used to analyze relaxation data
[56-61]

.  

The choice of data analysis model will govern the 

interpretation of the relaxation data.  

NMR test requires minimal preparation and usually 

takes a few seconds.  There is possibility to automate the 

analysis process, and further to design handheld chip 

driven device.  Therefore the speed of the entire 

detection procedure will not be limited by the NMR test. 

MRI is a technique with potential for greatly increasing 

test throughput.  Multiple samples may be placed the 
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wells of a multi-well microtiter plate and imaged 

simultaneously
[62]

.  The throughput will be multiplied by 

the number of cells compared with NMR spectrometer 

test.  

5  Conclusions 

Conventional detection methods involve multiple 

time-consuming and labor-intensive steps due to the 

difficulties in isolating pathogens from food matrix and 

the fact that pathogens are usually present in extremely 

low numbers.  A rapid, sensitive, and selective detection 

method certainly works to the advantages of food 

industries in terms of fast release of product lots, short 

reaction time for necessary corrective actions, and saving 

of money and labors.  Innovative rapid foodborne 

pathogen detection methods embracing nanotechnology, 

immunology, microbiology, and advanced NMR 

techniques can play a significant role in identifying 

foodborne pathogen sources during processing and 

distribution, and hence enabling food processors and 

distributors to control foods safety and reducing the 

potential risk of unintentional and deliberating 

contaminations of food products.  The benefits of timely 

detection and corrective actions to producers, processors, 

distributors, regulators, and consumers are enormous: 

thousands of lives and $6.5 to $34.9 billion will be saved 

annually. 
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