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Abstract: It is necessary to quantitatively identify different diseases and nitrogen-water stress for the guidance in spraying 
specific fungicides and fertilizer applications.  The winter wheat diseases, in combination with nitrogen-water stress, are 
therefore common causes of yield loss in winter wheat in China.  Powdery mildew (Blumeria graminis) and stripe rust 
(Puccinia striiformis f. sp. Tritici) are two of the most prevalent winter wheat diseases in China.  This study investigated the 
potential of continuous wavelet analysis to identify the powdery mildew, stripe rust and nitrogen-water stress using canopy 
hyperspectral data.  The spectral normalization process was applied prior to the analysis.  Independent t-tests were used to 
determine the sensitivity of the spectral bands and vegetation index.  In order to reduce the number of wavelet regions, 
correlation analysis and the independent t-test were used in conjunction to select the features of greatest importance.  Based on 
the selected spectral bands, vegetation indices and wavelet features, the discriminate models were established using Fisher’s 
linear discrimination analysis (FLDA) and support vector machine (SVM).  The results indicated that wavelet features were 
superior to spectral bands and vegetation indices in classifying different stresses, with overall accuracies of 0.91, 0.72, and 0.72 
respectively for powdery mildew, stripe rust and nitrogen-water by using FLDA, and 0.79, 0.67 and 0.65 respectively by using 
SVM.  FLDA was more suitable for differentiating stresses in winter wheat, with respective accuracies of 78.1%, 95.6% and 
95.7% for powdery mildew, stripe rust, and nitrogen-water stress.  Further analysis was performed whereby the wavelet 
features were then split into high-scale and low-scale feature subsets for identification.  The accuracies of high-scale and 
low-scale features with an overall accuracy (OA) of 0.61 and 0.73 respectively were lower than those of all wavelet features 
with an OA of 0.88.  The detection of the severity of stripe rust using this method showed an enhanced reliability (R2 =0.828). 
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1  Introduction  

Nitrogen and water stress are common in the agricultural 
management, causing major yield loss in winter wheat.  When 
environmental conditions meet, crop diseases and pests can occur 
and spread rapidly[1].  They can cause extremely severe reduction 
in yield and quality of winter wheat, and then result in a significant 
threat to food security[2].  Traditional monitoring methods for 
wheat stresses mainly rely upon manual plant inspection, which is 
time-consuming, less efficient, and unable to monitor the severity 
of diseases dynamically over large areas[3].  Fortunately, with the 
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ability to acquire spatially continuous information on land surfaces, 
remote sensing is an effective way to monitor the severity and 
scope of diseases and pests for crops[4].   

Powdery mildew (Blumeria graminis) and stripe rust (Puccinia 
striiformis f. sp. Tritici) are two recurrent wheat diseases in China.  
These two diseases often occur simultaneously under specific 
temperature and humidity conditions and when the transmission 
vectors are present.  This can be observed in the wheat-growing 
regions in northern and northwestern China[1].  Given the disease 
characteristics, the application of appropriate fungicides is critical 
to control the outbreak; however, the misuse and overuse of 
pesticides can also fail to control the disease; by contrast, they pose 
the risk of soil and groundwater contamination as well[5].  To 
detect these diseases is of vital importance.  It is well known that 
the disease pathogens can cause the changes of biochemical and 
biophysical of crops, such as pigment content, leaf water content 
and canopy structures, as well as the change of crop leaf colors[5-7].  
These changes would further result in the changes of canopy 
spectral responses in the sensitive spectral regions, such as the 
increase of reflectance in the red band, and the decrease of 
reflectance in the near-infrared bands[8,9].  Hyperspectral remote 
sensing is proven to be an effective way to detect crop diseases.  
Many studies aimed to monitor the impact of disease and pests by 
using traditional spectral analysis techniques, such as simple 
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spectral band regression, vegetation index, and the derivative of 
spectral features and continuum removal features[10-12].  Huang et 
al.[13] showed that stripe rust has strong spectral responses at 630-  
687 nm, 740-890 nm, and 976-1350 nm.  Then he proposed the 
normalized photochemical reflectance index (NPRI) based on the 
hyperspectral data to effectively estimate the disease index (DI) of 
stripe rust at the leaf level, with a R2 of 0.84[9].  Guan et al.[14]  
identified powdery mildew, stripe rust, and nitrogen-water stress by 
using integrative indices derived from hyperspectral data, they 
were consist of the Normalized Difference Vegetation Index and 
Physiological Reflectance Index (NDVI-PhRI), Modified Simple 
Ratio and Physiological Reflectance Index (MSR-PhRI), and 
Nitrogen Reflectance Index and Red edge Vegetation Stress Index 
(NRI-RVSI).  Yuan et al.[15] attempted to differentiate stripe rust, 
powdery mildew, and aphids by spectral features.  As shown in 
the results, the performance of the discrimination model was 
satisfactory in general, with an overall accuracy with R2 of 0.75.  
Huang et al.[16] investigated classification of different stresses using 
new optimized spectral indices (NSIs) extracted from the 
RELIEF-F algorithm.  The results showed that the NSIs were able 
to detect diseases and distinguish stresses with good reliability. 

Recently, the wavelet transform has emerged as an effective 
time-frequency analysis tool and has now been adopted in different 
fields[17-19].  Wavelet analysis includes discrete wavelet transform 
(DWT) and continuous wavelet transform (CWT).  In comparison 
to DWT, CWT can extract subtle information in spectra through 
analysis at continuous scales and positions[18,20], and the continuum 
position makes the output of CWT comparable to the original 
spectra.  Cheng et al.[19] extracted leaf water content using CWT 
and compared the results with traditional methods.  It was found 
that CWT was sensitive to small signals at high and low 
frequencies.  Some studies have begun to focus on the application 
of CWT in agriculture.  Huang et al.[8] reported that 
chlorophyll-sensitive bands selected using continuous wavelet 
analysis (CWA) had a stronger capability in extracting aphid 
information from spectral measurements than those selected using 
correlation analysis.  Zhang et al.[21] found that features extracted 
using CWA had a stronger correlation with and better estimation 
accuracy for powdery mildew at the leaf level, when compared 
with conventional spectral features.   

The above studies show that CWA can be used to analyze 
hyperspectral data to distinguish aphids from other diseases and 
pests.  However, there is little attention in the distinction of 
different diseases and abiotic stress in winter wheat.  In this study, 
we aimed to identify powdery mildew (PM), stripe rust (YR) and 
nitrogen-water stress (NW) of winter wheat at the canopy scale by 
the method of CWA, and to compare the performance of 
continuous wavelet features (WFs) derived from CWA to spectral 
bands (SBs) and vegetation indexes (VIs).  Furthermore, we 
established the estimation model of DI for the PM and YR diseases.  

2  Materials and methods  

2.1  Data acquisition  
2.1.1  Experiment design and disease index assessment 

The study site is located at Xiaotangshan Precision Agriculture 
Experimental Base, Beijing, China (40.18°N, 116.44°E).  There 
are three experiments in the study, and the filed campaigns were 
carried out at the filling stage of winter wheat in different years.  
Experiment 1 for monitoring the infection of PM was conducted in 
21st May 2012, 36 plots (4 healthy and 32 diseased plots) were 
selected for the investigation and canopy spectral reflectance 

measurements.  Experiment 2 for monitoring the infection of 
stripe rust was conducted in 23rd May 2003, 51 plots (5 healthy and 
46 disease plots) were selected.  Besides, Experiment 3 was the 
nitrogen-water experiment, conducted in 24th May 2002 and 
coupled different nitrogen and water treatments.  There were four 
nitrogen treatments (0, 150 kg/hm2, 300 kg/hm2 and 450 kg/hm2) 
and four water treatments (0, 225 m3/hm2, 450 m3/hm2, and    
675 m3/hm2).  According to the recommendation, the control field 
was applied with 300 kg/hm2 of nitrogen and 450 m3/hm2 of water.  
48 plots (3 healthy and 45 stressed plots) were selected for 
sampling and canopy spectral reflectance measurements. 

Winter wheat was inoculated with powdery mildew and yellow 
rust in early April by spore inoculation.  When investigated, the 
disease severity was inspected using the five-point method, i.e., in 
each plot, we selected five symmetric points with an area of about 
1 m2, and then 20 wheat samples were randomly investigated in 
each selected point and recorded the severity level of each leaf.  
The severity levels were classified into 9 grades: 0% (i=1), 1% 
(i=2), 10% (i=3), 20% (i=4), 30% (i=5), 45% (i=6), 60% (i=7), 
80% (i=8) and 100% (i=9), in which 0% indicates no incidence of 
powdery mildew or yellow rust, whereas 100% indicates the 
highest incidence[12].  The DI was calculated using Equation (1): 
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where, i is the severity level; n is the total number of leaves at 
each severity level; k is the highest severity level of 9.  The DIs of 
five points within a plot are averaged to represent the disease 
severity of the plot. 
2.1.2  Canopy spectral measurement 

Canopy spectra were measured using an ASD FieldSpec Pro 
FR 2500 (ASD Inc., Boulder, Colorado, USA) under clear sky 
conditions between 10:00-14:00 (Beijing local time).  Spectral 
data was collected from 350-2500 nm at a spectral resolution of   
3 nm for the band 350-1050 nm and 10 nm for the band 1050-  
2500 nm.  All canopy spectral measurements were taken from a 
height of 1.3 m above the ground (the height of wheat is 90±3 cm 
at maturity).  The ASD spectrometer was fitted with a 25° field of 
view probe.  A calibration panel was used in the process of 
measurement, and the spectrum of each investigation point was 
recorded as an average of 20 scans.   
2.2  Methods of data processing and modelling 
2.2.1  Spectral normalization 

As the spectral reflectance acquired in different years were 
influenced by the soil and illumination background, spectral 
normalization was necessary before performing the spectral 
analysis, because it can reduce the influence of the above 
differences, but not alter the inherent differences of stressed and 
healthy samples[22].  The spectral data collected in 2003 and 2012 
were taken as an example to illustrate the process of spectral 
normalization. 

Firstly, the average spectrum of healthy wheat samples 
collected in 2003 was chosen as the baseline measurement.  The 
spectral ratio was calculated by the ratio of the baseline spectral 
reflectance to the average spectral reflectance of healthy wheat 
samples collected in the other two years.  It is formulated as:  
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where, Ratioi is the spectral ratio at band i, ( 03)H iRef  and 
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( 12)H iRef  are the average spectral reflectance of healthy wheat 

samples at band i collected in 2003 and 2012, respectively. 
Secondly, the spectral normalization in 2012 was calculated as 

Equation (3).   

( 12) ( 12) iH i H iRef Ref Ratio′ = ×
   

         (3) 

where, ( 12)H iRef ′
 
and ( 12)H iRef

 
are the normalized and original 

spectral reflectance at band i in 2012; And the spectral reflectance 
collected in 2002 was normalized in the similar process. 
2.2.2  Vegetation indexes 

Sixteen VIs (Table 1) were selected to identify PM, YR and 

NW stress.  The chlorophyll absorption ratio index (CARI), 
modified chlorophyll absorption ratio index (MCARI) and 
transformed chlorophyll absorption ratio index (TCARI) are 
closely related to chlorophyll content.  The normalized difference 
water index (NDWI) and the water index (WI) are associated with 
water content.  The normalized difference vegetation index 
(NDVI) is sensitive to canopy structure, and soil adjusted 
vegetation index (SAVI) along with the optimized soil adjusted 
vegetation index (OSAVI) further reduces the sensitivity of NDVI 
to the soil background.  The physiological reflectance index (PhRI) 
and photochemical reflectance index are useful to estimate the solar 
utilization efficiency during development. 

 

Table 1  Summary of vegetation indexes used to identify PM, YR and NW stress 

VI Definition Formula References 

NRI Nitrogen Reflectance Index (R570–R670)/(R570+R670) [23] 

NPCI Normalized Pigment Chlorophyll Ratio Index (R680–R430)/(R680+R430) [7] 

ARI Anthocyanin Reflectance Index (R550)-1–( R700)-1 [24] 

CARI Chlorophyll Absorption Ratio Index (a670+R670+b)/a2+1)0.5×(R700/R670) 
a=(R700–R500)/150, b=R500-(a×550) 

[25] 

MCARI Modified Chlorophyll Absorption Ratio Index [(R701–R671)–0.2(R701–R549)]/(R701/R671)- 
[26] 

TCARI Transformed Chlorophyll Absorption Ratio Index 3[(R700–R670)–0.2(R700–R500)(R700/R670)]- 
[27] 

SIPI Structure Insensitive Vegetation Index (R800 – R445)/(R800 – R680) [7] 

RVSI Red Edge Vegetation Stress Index [(R712+R752)/2]–R732 [28] 

NDVI Normalized Difference Vegetation Index (R800–R670)/(R800+R670) [29] 

GI Greenness Index R554/R677- 
[30] 

PhRI Physiological Reflectance Index (R550–R531)/(R550+R531) [31] 

PRI Photochemical Reflectance Index (R531–R570)/(R531+R570) [31] 

WI Water Index R900/R970- 
[32] 

NDWI Normalized Difference Water Index (R860–R1240)/(R860+R1240) [33] 

SAVI Soil Adjusted Vegetation Index (R800–R670)(1+L)/(R800+R670+L), L=0.5 [34] 

OSAVI Optimized Soil Adjusted Vegetation Index (R800–R670)/(R800+R670+0.16) [35] 
 

2.2.3  Continuous wavelet transform  
Compared to the Fourier transform, continuous wavelet 

transform (CWT) provides the localized frequency and time 
domains at the same time.  The wavelet transform refines each 
original spectrum at continuum positions and scales according to a 
wavelet function Ψ(λ).  The Mexican Hat wavelet, similar to the 
shape of the absorption features, was used as the mother wavelet’s 
basis[17].  Then, the original spectrum can be converted to a series 
of continuous wavelet powers that can extract subtle information 
on disease spectra[36]:  
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where, ( )ψ λ
 
is the mother wavelet, f(λ) (λ= 1, 2,…, k, where k is 

the number of wave bands) is the reflectance spectrum; a is the 
scaling factor representing the width of the wavelet, and b is the 
shifting factor representing the position. 

The CWT converted 1-D reflectance to a 2-D wavelet power 
scalogram visualized as dimensions of wavelength and scale.  For 
convenient calculation and to not affect the accuracy of CWA, the 
wavelet coefficients were applied in this study[19,20].  These 
wavelet coefficients were decomposed at scales of 2n (n=1, 2,…, 
10).  
2.2.4  Feature selection of disease discrimination  

In order to eliminate the redundancy of spectral bands, 

vegetation indexes, and wavelet features, a feature screening 
process is necessary to identify the most significant features used to 
discriminate different stresses.  Step 1: An independent t-test was 
conducted to obtain the spectral bands and vegetation indexes that 
were discrepant between PM & YR, YR & NW, and NW & PM.  
Step 2: Since wavelet features have strong redundancy with only an 
independent t-test, both correlation analysis and an independent 
t-test were used to search correlated (Figures 1a-1c) and discrepant 
features (Figures 1d-1f).  Step 3: The p-values of the correlation 
analysis and independent t-test indicated the significance of 
correlation and difference between stressors.  Then the 
intersections were used to screen significant SBs/VIs (p<0.05).  
For WFs, the overlapping features (p<0.01) had both strong 
correlation and significant discrepancy under different stresses 
(Figure 1g). 
2.2.5  Stresses discrimination models  

To assess and compare the efficiency of SBs, VIs and WFs in 
stress identification, both algorithms of Fisher’s Linear 
Discriminate Analysis (FLDA) and a support vector machine 
(SVM) were applied separately.  FLDA aims to find an 
appropriate projection direction using the covariance matrix to 
achieve the maximum degree of distinction between each 
category[37-39].  Meanwhile, SVM was one of methods of machine 
learning based on the statistical theory, and it is better than 
statistical method in solving nonlinear problems[40].  In this study, 
FLDA and SVM were conducted using MATLAB 8.3 (The 
MathWorks, Inc., Nat-ick, MA, USA). 
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Figure 1  Visualization of p-value scalograms of independent t-test and correlation analysis by continuous wavelet analysis 

 

SBs, VIs and WFs were used to discriminate PM, YR, and NW 
in algorithms of FLDA and SVM.  Wheat samples were randomly 
divided into two datasets: 60% of the samples as the training 
dataset and the remaining 40% of the samples as the validation 
dataset.  Four indicators were calculated in a confusion matrix to 
evaluate the accuracy of the models: the overall accuracy (OA), 
user’s accuracy (U′.sa(%)), producer’s accuracy (P′.sa(%)), and kappa 
coefficient.   
2.2.6  Estimation model of disease index and validation 

Crop disease monitoring can be implemented by identifying 
different stresses and estimating the DI.  Based on the result of 
stresses discrimination using SBs, VIs and WFs, the best one 
among the above three spectral features was selected, and then was 
used to estimate the DI of winter wheat.  Considering possible 
multi-correlation among variables, partial least squares regression 
(PLSR) was utilized to establish the estimation model of DI.  
Leave-one-out cross validation approach was used for model 
validation.  

3  Results 

3.1  Normalization of original spectral reflectance 
The curves of spectral ratio between any two years (i.e. 2012 

vs. 2003, 2012 vs. 2002, and 2003 vs. 2002) are shown in Figure 2.  
When a band ratio was closer to 1, the differences of data in two 

different years were smaller.  The curves of ( ) ( )12 03H HRef Ref
 

and ( ) ( )03 02H HRef Ref were closer to 1 than that of 

( ) ( )12 02H HRef Ref , which implied that the backgrounds of PM and 

NW were similar to that of YR, whereas the differences of 
backgrounds between powdery mildew and nitrogen-water were 
relatively large.  Therefore, the average spectrum of healthy 
samples in 2003 was chosen as the baseline measurement.  Then 
the spectral reflectance of the PM, YR, and NW acquired in 
different years can be normalized according to Equation (3).  

However, the ratio had a certain deviation from 1, perhaps because 
the data were obtained in different years with different 
environmental conditions.  This also highlighted the necessity of 
spectral normalization. 

 
Figure 2  Curves of spectral ratio between any two years  

(i.e. 2012 vs. 2003, 2012 vs. 2002, and 2003 vs. 2002) 
 

3.2  Identification of discrepancies in spectral bands and 
vegetation indexes  

The spectral bands that were significantly screened are shown 
in Figure 3.  It was found that most of the response bands were 
located in the visible region, and the two spectral ranges at 615-621 
nm and 693-696 nm were the most effective to identify PM, YR 
and NW.  This result was consistent with the finding of Graeff et 
al.[41].  As shown in Table 2, six vegetation indexes were selected, 
including NPCI, ARI, MCARI, TCARI, PhRI and PRI.  NPCI, 
ARI, PhRI and PRI were more sensitive to the YR during the 
whole growth stages of winter wheat.  Huang et al. reported that 
the ARI and PRI achieved good performances in the monitoring of 
crop disease[12], and this was further confirmed by Devadas et al.[7] 
Because of the exclusive sensitivity to disease, PhRI can be used to 
discriminate disease and abiotic stress[22].  In addition, the two 
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indexes, i.e. MCARI and TCARI, can effectively capture the 
changes of leaf chlorophyll content due to crop diseases and 
nitrogen-water stress.   

 
Figure 3  Overlapping spectral band selection (the black regions 

are the selected sensitive bands) 
 

Table 2  Selection of vegetation indexes to identify PM, YR 
and NW 

VI PM & NW YR & PM NW & YR 

NRI +  + 

NPCI + + + 

ARI + + + 

CARI  + + 

MCARI + + + 

TCARI + + + 

SIPI + +  

RVSI  + + 

NDVI + +  

GI +  + 

PhRI + + + 

PRI + + + 

WI    

NDWI + +  

SAVI + +  

OSAVI + +  
Note: “+” indicates the selected VIs at a significant level of p-value<0.05. 
 

3.3  Extraction of sensitive and discrepant wavelet features 
As shown in Figure 1g, the wavelet features screened by 

overlapping processes formed a number of scatter regions on 
p-value scalograms.  Since features in each region were from 
sequential positions and scale and they carried the information on 
superfluous wavelet, the feature with the strongest correlation  
and most significant difference within each region was 
determined to represent the spectral information of the feature 
region (Table 3).   

All selected wavelet features were observed in visible, red-edge 
and near infrared regions.  The analysis of the WFs shows that they 
were mainly distributed in low scales (21-24), whereas the remaining 
five WF, i.e. WF1 525 nm, WF3 573 nm, WF4 615 nm, WF7 719 
nm, and WF10 809 nm, were in high scales (25-26).  They appeared 
on green peak, red valley and high reflection platforms in the 
spectral region, and captured the variations in amplitude of leaf 
reflectance over a broad spectral interval.  The positions of WFs in 
low scales had a wide distribution, in which WF12 and WF13 
embodied the changes in internal plant structure.  From their 
distribution, most of the wavelet features were in the strong 
absorbed position of chlorophyll in visible regions.  WF8, WF9, 
and WF10 were located at the red edge, the shift of which indicates 

a growing condition in crops[42].  WF11, WF12, and WF13 
representing plant structure were distributed in the near-infrared 
shoulder, which is not detected in discrepant spectral bands and 
vegetation indexes.  This was consistent with the result of Cheng et 
al.[19] who reported that the decomposition of reflectance spectra 
with CWT effectively decreased the influence of leaf structural 
variation.  WF13 was related to the water absorption located at 
1204 nm, which may suggest significant water stress[20].  Others 
were mainly in the green peak and red valley.  WF5 and WF6 were 
distributed in the absorption peaks of chlorophyll b and chlorophyll 
a.  WF7 was weakly related to water absorption.  The changes of 
biochemical and biophysical of crops, such as pigment content, leaf 
water content and canopy structures would occur after suffering 
from stresses[5-7].  From these results, all changes of winter wheat 
under stresses could be sensitively captured by the wavelet features.    

 

Table 3  Locations and scales of stress-sensitive wavelet 
features 

Wavelet feature Scale Wavelengths/nm p-value 

WF1 25 525 0.01 

WF2 22 548 0.01 

WF3 26 573 0.01 

WF4 25 615 0.01 

WF5 24 652 0.01 

WF6 24 669 0.01 

WF7 25 719 0.01 

WF8 23 758 0.01 

WF9 24 778 
 

0.01 

WF10 25 809 0.01 

WF11 24 839 0.01 

WF12 21 958 0.01 

WF13 22 1204 0.01 
 

3.4  Comparison of the performances spectral bands, 
vegetation indexes and wavelet features in identifying stresses 

This study presents CWA as an effective method for both 
analyzing spectra and selecting features for the identification of 
different stresses.  Based on the extracted SBs, VIs and WFs, the 
accuracy of the discriminate models (FLDA, SVM) is 
demonstrated in Table 4.  It displays the WFs at stress 
discrimination with an OA and kappa coefficient of 0.91 and 0.86 
in FLDA and 0.79 and 0.68 in SVM, respectively.  Meanwhile, 
the accuracy of SBs and VIs was relatively poor, with an OA of 
0.72 and 0.72 in FLDA and 0.67 and 0.65 in SVM, respectively.  
For the two models, FLDA performed better than SVM at stress 
identification in general, and this may be associated with the 
selection of parameters in SVM.  When paying attention to 
different stresses, only YR could be identified correctly based on 
SBs and WFs, and the user’s accuracy was just as high at 80.4% in 
FLDA.  However, YR and NW based on WFs could be identified 
more accurately with a user’s accuracy of 0.96, while that of PM 
was approaching 89.3%.  The results indicated that the accuracy 
of PM, YR and NW using WFs was higher and more reliable, 
which may be related to the characteristics of continuous wavelet 
analysis that highlight the faint change of spectral information 
through linking the original spectrum to DI directly at continuous 
positions and scales. 
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Table 4  Confusion matrix and classification accuracy 

 
FLDA SVM 

PM YR NW sum  OA Kappa PM YR NW sum  OA Kappa 

SBs 

PM 24 1 7 32 75.0 0.72 0.58 9 2 21 32 28.1 0.67 0.50 

YR 9 37 0 46 80.4   2 37 7 46 80.4   

NW 17 1 27 45 60.0   7 1 37 45 82.2   

sum 50 39 34 123    18 40 65 123    

 48.0 94.9 79.4     50.0 92.5 56.9     

VIs 

PM 20 1 11 32 62.5 0.72 0.59 20 0 12 32 62.5 0.65 0.48 

YR 9 37 0 46 80.4   10 33 3 46 71.7   

NW 13 0 32 45 71.1   17 1 27 45 60.0   

sum 42 38 43 123    47 34 42 123    

 47.6 97.4 74.4     42.6 97.1 64.3     

WFs 

PM 25 0 7 32 78.1 0.91 0.86 18 0 14 32 56.3 0.79 0.68 

YR 1 44 1 46 95.7   2 41 3 46 89.1   

NW 2 0 43 45 95.7   7 0 38 45 84.4   

sum 28 44 51 123    27 41 55 123    

 89.3 100 84.3     66.7 100 69.1     
 

3.5  Information content of high-scale, low-scale, and all WFs. 
It is obvious that wavelet features were more suitable to 

discriminate wheat stresses.  To analyze further, wavelet features 
were then split into low-scale (21-24) and high-scale (25-26) feature 
subsets.  The high-scale, low-scale and all-wavelet features were 
used as input to detect their informative contribution to stress 
identification (Table 5).  For PM, YR and NW, the recognition 
accuracies of 63.6%, 60.0% and 60.0% in high-scale features were 
lower than those in the low scale, which showed accuracies of 
81.82%, 66.67% and 73.33%.  Nevertheless, the accuracy was 
best when all wavelet features were used, with values of 90.9%, 
80.0%, and 93.3%.  The classified result is shown in Figure 4 
through group distribution in FLDA according to the canonical 
discriminant function.  Figures 4a-4c are group distributions of 
high-scale, low-scale, and all-wavelet features, respectively). 

 

Table 5  Identification accuracy for different stresses by 
wavelet feature subsets 

 Stress Sample points Correct points Accuracy/% 

High-scale 

PM 11 7 63.6 

YR 15 9 60.0 

NW 15 9 60.0 

Low-scale 

PM 11 9 81.8 

YR 15 10 66.7 

NW 15 11 73.3 

All 

PM 11 10 90.9 

YR 15 12 80.0 

NW 15 14 93.3 
 

3.6  Estimation of disease index of winter wheat 
To further test application capacity of the sensitive WFs, the 

severity of PM and YR was estimated with PLSR.  As shown in 
Figure 5, both inversion results achieved satisfactory retrieval 
accuracy with RMSE less than 15%.  Moreover, the accuracy of 
YR had an enhanced level of reliability, with an R2 of 0.828, 
suggesting that it is feasible to estimate the severity of winter wheat 
infected with stripe rust, and this is consistent with the results of 
Zhang et al.[21] which revealed wavelet features were superior to 
traditional spectral features in detecting stripe rust during growth 
periods.  

 
a. High-scale 

 
b. Low-scale 

 
c. All 

Figure 4  Group distribution for different stress conditions 
according to the canonical discriminant function 
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a. PM 

 
b. YR 

Figure 5  Scatter diagram of estimated DI and WFs-measured 
disease index 

4  Discussion 

In this study, the powdery mildew, stripe rust and 
nitrogen-water stress of winter wheat were quantitatively identified 
using hyperspectral data.  Six VIs, i.e. NPCI, ARI, MCARI, 
TCARI, PhRI and PRI were retained, their suitability were also 
demonstrated in the results of Zhang et al.[22], Huang et al.[12] and 
Devadas et al.[7].  The selected SBs and spectral bands used in the 
VIs were distributed in the visible region, whereas the results 
showed that the stress or diseases were not completely 
discriminated in this region.  This indicates that the SBs and VIs 
have the limitation in identifying different stresses.  However, 
unlike the VIs that use mathematical combination of two or three 
sensitive spectral bands, the analysis of the whole spectral region 
from the visible to near-infrared bands has proven to be most 
effective.  This is done by looking at the different positions and 
scales where the CWA shows variation of target information in 
detail using statistics, and then searching the most sensitive features 
at multiple scales and positions.  In this study, a small number of 
wavelet features were extracted to form p-value scalograms.  The 
most significant feature in each sequential position was selected, 
which ensured that it was the most sensitive and discrepant 
features.  

The low-scale components are suitable to capture absorption 
features of narrow spectral intervals while the high-scale 
components are well suited to define the overall spectral shape of 
spectra[18,43,44].  As shown in Table 5, low-scale WFs contributed 
more information to identification than high-scale WFs.  In this 
study, narrow absorption features showed changes in pigment, 
water, and structure caused by different stresses.  Because the 
narrow absorption information and the overall spectral shape were 

combined, all WFs were most suitable to differentiate the stresses.  
Figure 4c distinctly shows that the centroid distance of PM, YR 
and NW became larger and each category was more concentrated.  
The CWA is expected to be applied to the hyperspectral imaging 
spectroscopy data.  However, it needs to be validated in the future. 

5  Conclusions 

Different stresses can influence spectral characteristics in 
different ways, and it has been shown that continuous wavelet 
analysis can provide an effective way to identify and discriminate 
these different stresses.  In this study, hyperspectral canopy 
measurements of PM, YR, and NW were normalized in order to 
eliminate the effect of background differences.  A total of 13 WFs 
had noticeably superior performance in stress identification with an 
OA of 0.91 in FLDA, and a producer’s accuracy of YR reaching 
100%.  Moreover, low-scale WFs contained more information on 
pigment and water changes, and made the largest contribution to 
the recognition of stresses.  The significant estimation of PM and 
YR demonstrated the potential application of wavelet features 
further.  In this study, CWA exhibited high practicability 
in identifying and distinguishing PM, YR and NW.  The WFs 
used to identify stresses were applied directly to estimate the 
severity, contributing to rapid monitoring of disease occurrence so 
as to guide the dosage of pesticides.  It also has great potential for 
deriving wavelet features to identify other stresses of crops.  
However, the CWA method requires hyperspectral data, which 
increases the cost of monitoring, which in turn limits its use in the 
field.  Moreover, other growth periods (elongation stage, 
flowering stage) have not been validated in this study.  Therefore, 
the applicability of the method still needs further testing and 
research. 
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