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Abstract: Food crisis is a matter of prime importance because it becomes more severe as the global population grows.  
Among the solutions to this crisis, breeding is deemed one of the most effective ways.  However, traditional phenotyping in 
breeding is time consuming and laborious, and the database is insufficient to meet the requirements of plant breeders, which 
hinders the development of breeding.  Accordingly, innovations in phenotyping are urgent to solve this bottleneck.  The 
morphometric and physiological parameters of plant are particularly interested to breeders.  Numerous sensors have been 
employed and novel algorithms have been proposed to collect data on such parameters.  This paper presents a brief review on 
the parameter measurement for phenotyping to describe its development in recent years.  Some parameters that have been 
measured in phenotyping are introduced and discussed, including plant height, leaf parameters, in-plant space, chlorophyll, 
water stress, and biomass.  And the measurement methods of each parameter with different sensors were classified and 
compared.  Some comprehensive measurement platforms were also summarized, which are able to measure several parameters 
simultaneously.  Besides, some deficiencies of phenotyping should be addressed, and novel methods should be proposed to 
reduce cost, improve efficiency, and promote phenotyping in the future. 
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1  Introduction  

The rapid increase of the world population, alongside the 
decrease in cultivated land area, intensification of global climate 
change, and exacerbation of water resources shortage, is posing a 
tremendous challenge to the agricultural sector, which is facing the 
growing problem of grain security[1]. 

The most effective way to solve the food crisis is to increase 
grain yield.  Plants are influenced by both self-genome and 
external environment conditions.  At present, plants are more 
frequently subjected to unprecedented extreme weather (e.g., gale, 
drought, and waterlogging).  Thus, breeding new plant varieties 
capable of withstanding complex and varied environmental 
conditions is imperative. 

In the past decades, significant progress has been made in the 
field of plant breeding; particularly, advances in plant functional 
genomics and gene technologies have deepened the understanding 
on plant genomes[2].  Currently, genetically modified technologies 
have become an attractive subject and are regarded as the most 
effective and expedient solution to increase grain yield.  With the 
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development of plant genotyping, breeders intend to research on 
the nature of genotype by environment interactions.  Phenotype, 
which is the external expression of plant genetics, results from the 
interaction of genotype and environment.  Consequently, 
understanding the relationship between genotype and phenotype 
and linking them to the physiology at the cellular and tissue levels 
are becoming more significant than ever[1,3].  Breeders pay 
attention to both the final grain yield and the entire process of plant 
growth.  Some plant traits and phenotypic parameters that vary in 
space and time as an organ develops need to be monitored and 
measured for a considerable time to cultivate excellent varieties.  
However, this task is formidable because numerous parameters are 
measured manually and the methods employed are outdated, 
laborious, costly, and time consuming.  As a result, the use of 
inefficient measurement methods results that cannot realize 
large-scale production in breeding, and cannot inadequately 
exploited information from available genetic data[2].  Owing to the 
lack of phenotypic data, phenotyping has superseded genotyping as 
the major operational bottleneck and funding constraint of genetic 
analyses and breeding research[3].  Thus, applying new techniques 
and methods to relieve this bottleneck is both urgent and 
promising.   

In recent years, innovations in electronics, computer science, 
and sensor technologies have promoted the development of 
phenotyping, and novel methods specific to the measurement of 
phenotypic parameters have been put forward.  Since 2010, rapid 
high-throughput plant phenotyping methods, which exhibit great 
potential to enhance selection efficiency for plant breeding, have 
been discussed[4].  All types of existing sensors and technologies 
have been implemented and integrated.  Some precision 
agriculture technologies, which have been studied for many years, 
can also be implemented in phenotyping.  In addition, sensor 
technologies, remote-sensing technologies, three-dimensional (3D) 
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imaging techniques, reverse engineering, and virtual plant 
technique, can provide the basis for phenotyping.  Such measuring 
methods can be carried out in the field or the laboratory to collect 
massive data, thereby facilitating high-throughput phenotyping.   

Therefore, phenotyping allows the measurement of the 
morphometric and physiological parameters of plants in a rapid, 
non-destructive, accurate, and high-throughput manner.  It can 
help breeders analyze and screen the salt resistance, drought 
resistance, and insect resistance of different varieties.  The 
objectives of this paper are to summarize and analyze the existing 
measurement methods and sensors according to the related 
morphometric and physiological parameters in high-throughput 
plant phenotyping and discuss the obstacles encountered in this 
field. 

2  Main phenotyping parameters and measurement 
methods of plant 

Currently, the measured objects in plant phenotyping are 
conventional food and economic crops, such as wheat, maize, 
sorghum, barley, tomato, bean, and grape.  These plants have 
significant practical and economic values for agricultural 
development.  Measurement usually focuses on some crop stand 
parameters.  These parameters can be divided into morphometric 
and physiological parameters.  The morphometric parameters, 
including plant height, stem diameter, leaf area or leaf area index, 
leaf angle, stalk length, in-plant space, and the physiological 
parameters, such as chlorophyll, photosynthetic rate, water stress, 
biomass, salt resistance, and leaf water content, which can all 
influence or represent the growth of a plant. 

The phenotypic parameters that must be measured are 
numerous, and thus various sensors are used in phenotyping.  
Phenotype measurement is related to many traditional technologies.  
Numerous conventional and novel sensors are employed and 
integrated for plant characterization, including color digital 
cameras, lidar or laser sensors, range cameras, spectral sensors and 
cameras, thermography, fluorescence sensors, and other sensors.  
Several typical sensors that were extensively implemented in plant 
phenotyping were described in the following part, related 
representative products are listed in Table 1. 

 

Table 1  Typical devices in plant phenotyping measurement 

Sensor Sensor model Manufacturer 

Color digital 
camera __ Canon, Tokyo, Japan 

Nikon, Tokyo, Japan 

Lidar/laser LMS series 
VLP-16, HDL-32E 

Sick AG, Waldkirch, Germany 
Velodyne Acoustics, California, 
America 

Range  
camera 

CamCube 3.0 
SR4000 

Kinect 2.0 

PMD, Germany 
MESA AG, Switzerland 
Microsoft, Washington, America

Spectral  
sensor 

GreenSeeker RT 100, 200 
CropCircle ACS 210, 430, 

470 
N-sensor 

Trimble, California, America 
Holland Scientific, Lincoln, 
America 
Yara International ASA, Oslo, 
Norway 

Thermography FLIR T series FLIR, Oregon, America 

Fluorescence 
sensor Multiples 2, 3 FORCE-A, Orsay, France 

 

Color digital cameras, which are mostly made up of 
charge-coupled device (CCD) silicon sensors or complementary 
metal oxide semiconductors, are the most conventional and 
simplest sensors in the machine vision field.  Color digital 
cameras can collect the visible-band radiation of an object and 

present its color information and textures information with similar 
wavelengths to human eyes.  Plant 3D structure could be 
reconstructed with many images captured by the stereo vision 
system.  It consisted of one or more color digital cameras, which 
made it possible for color digital camera to measure more 
phenotypic parameters. 

Lidar sensors, which emit infrared or visible wavelength pulses, 
have been extensively used in agricultural studies since the 1980s[5] 
and are mostly based on time-of-flight (ToF) principle, 
interferometry, or triangulation.  Lidar sensors based on ToF are 
suitable for measuring long ranges, the others are used to measure 
short ranges[6].  Lidar sensors output discrete point cloud data 
contain the distance information between the object and the sensors.  
Based on the structures, lidar could be divided into 
two-dimensional (2D) lidars and 3D lidars.  2D lidars detect an 
object through sector scanning and generate point cloud data in a 
plane.  3D lidars can present the point cloud data of the object 
surface features with high accuracy and high resolution, as well as 
more easily acquire morphological and structural data[7].  Besides 
the common lidar sensor just for measuring distances, 
full-waveform (FWF) lidar and hyperspectral lidar were also 
implemented in plant phenotyping.  FWF lidar contains all the 
return information of a laser pulse in a unique waveform shape, not 
just the peaks, and peak intensity is also recorded.  FWF lidar 
makes it easier to distinguish diverse objects[8].  Hyperspectral 
lidar is able to add the spectral response characteristics of plant to 
multiple wavelengths to point data, which help to diagnose the 
vigour of plant. 

Range cameras can provide real-time depth information and 
images simultaneously.  These cameras are mostly based on the 
ToF principle, structured light and light coding, ordinarily return 
depth, amplitude, and intensity images.  The depth image contains 
the Z coordinate of the scene, the amplitude image can evaluate the 
quality of depth information, and the intensity image is simply a 
grayscale image[9].  As a new kind of range camera, RGB-D 
cameras equipped with RGB (red, green, and blue) camera, depth 
sensor and infrared emitters have been developed at low cost.  
RGB-D camera could simultaneously provide color information 
and depth information of an object, Kinect (Microsoft, WA, 
America) and Xtion (Asus, Taipei, Taiwan) are regarded as 
representatives of such cameras and are used extensively in 
numerous applications, including its primary application of plant 
measurement[10].   

Spectral sensors usually detect the reflected information of a 
visible spectrum (400-700 nm) and a near-infrared (NIR) spectrum 
(700-1200 nm) and can be used to explore some specific 
characteristics of objects.  Some commercial agricultural products, 
such as GreenSeeker (Trimble, California, America), ASD 
FieldSpec (Analytical Spectral Devices, Boulder, America), 
N-sensor ALS (Yara International ASA, Oslo, Norway), and 
CropCircle (Holland Scientific, Lincoln, America), have been 
widely implemented by researchers. 

These spectral devices usually measure crop or soil spectral 
reflectance at multi-wavelength, and provide classic vegetation 
indices.  In addition, spectral cameras including multispectral and 
hyperspectral cameras, which can acquire spectral images that 
recording the reflections in a broad range of wavelengths of an 
object.  Compared with spectral sensors, spectral cameras 
combine spectral information with every pixel and contribute to 
reducing the background interference and making spectral 
information more accurate[11,12]. 
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Thermography detects and visualizes the infrared radiation of 
an object in line with its temperature.  The sensitive spectral band of 
thermography is 3-14 μm, and the most common wavelengths are 
3-5 μm and 7-14 μm[13].  Thermography is able to detect early heat 
generation in stressed plant, especially, leaf[14].  Thermal images 
can represent the surface temperature of a plant objectively.   

Fluorescence sensors measure plants in a unique and active 
manner.  In general, the chlorophyll of a plant is the fluorescent part.  
External light is absorbed and utilized by the chlorophyll for 
photosynthesis, where a proportion of the absorbed light is 
converted into heat, while the other proportion is reflected back in 
the form of fluorescence.  Numerous plant traits, particularly some 
parameters related to the photosynthesis of the plant, can be acquired 
by detecting the fluorescence.   

Many other sensors, such as ultrasonic sensor and thermometer, 
are also used in phenotype measurement, which will be described 
in the following sections. 

Phenotype measurement can be conducted in an indoor or 
outdoor measurement environment.  Measurement types mainly 
include handheld, vehicle-based, and unmanned aerial vehicle 
(UAV)-based measurements.  In the following sections, the 

measurement methods for the morphometric parameters (plant 
height, leaf area (LA)/leaf area index (LAI), leaf inclination angle 
(LIA), and in-plant space) and physiological parameters 
(chlorophyll, water stress, and biomass) of plants in phenotyping 
are introduced and summarized as a function of sensors (Table 2).  
The characteristics of the common sensors are listed in Table 3, and 
the detail information about these sensors will be discussed in the 
following sections. 

 

Table 2  Measurement devices for morphometric and 
physiological parameters 

Sensor 

Parameters 

Height LA/LAI/ 
LIA 

In-plant  
space Chlorophyll Water 

stress Biomass

Color digital camera √ √ √   √ 

Lidar/laser √ √ √ √  √ 

Range camera √ √ √   √ 

Spectral sensor/camera  √  √ √ √ 

Thermography     √  

Fluorescence sensor    √ √  

 

Table 3  Advantages and disadvantages of common sensors implemented in phenotyping 

Sensors  Advantages Disadvantages 

Stereo vision system 
- Low cost 
- High resolution 
- Suitable for UAV 

- Heavy computation 
- Sensotive to ambient light 
- Subject to the uniform texture 

Lidar/laser sensor 

- Long measurement range 
- Suitable for spatial classification 
- Spectral information can be retrived from reflection 
- Suitable for UAV 

- High cost 
- Limited information on occlusions and shadows 

Range camera - Provide depth images to process 
- Low resolution 
- Sensotive to ambient light 
- Short measurement range 

Spectral sensor - Wide commercial applications and technology meturity - Small measurement region 
- Background interference 

Spectral camera 
- Abound spectral information  
- Remove background interference 
- Suitable for UAV 

- High cost 
- Large image data and heavy computation 
- Sensotive to ambient conditions 

Thermography 
- Large measurement region 
- Remove background interference 
- Suitable for UAV 

- Sensitive to ambient conditions 
- Require extensive calibration 

Fluorescence sensor - Sensitive to chlorophyll and water stress - Small field of view 
- Require intensive illumination  

Ultrasonic sensor 
- Low cost 
- High sampling rate 
- Process data easily 

- Short measurement range 
- Sensotive to surface 

Thermometer - Low cost 
- Impervious to sun light 

- Affected by ambient temperature 
- Soil background interference 

 
 

3  Morphometric phenotyping parameters 
measurement 

3.1  Plant height measurements 
Plant height is a vital morphological parameter that can be 

used to describe the architecture of a plant.  Plant height at the 
seedling growth stage can represent plant vigor, which is closely 
related to the final grain yield.   

Conventional measurement is performed manually with a 
meter stick and is thus subject to human error, especially when the 
plant is higher than the human measuring it.  Color digital 
cameras have been used to measure plant height, which can be 
calculated by processing the color images; however, this method 
requires known objects as reference.  Realizing high-throughput 

measurement rapidly through this method is difficult.  An accurate 
and acceptable method that can determine plant height is the 
difference method, wherein the difference between the canopy 
height and the surface is calculated[15].  Novel systems or sensors, 
such as stereo vision systems, lidar or laser sensors, ultrasonic 
sensors, and range cameras, have also been utilized to measure 
plant height.   

The current types of high-throughput measurement methods 
for plant height are vehicle-based and UAV-based[15-18].  Each 
measurement type has its pros and cons.  Vehicle-based 
measurement can acquire relatively accurate raw data owing to its 
close-up sampling, making it possible to obtain individual plant 
height.  Conversely, UAV-based measurement is performed at a 
distance from the canopy and is capable of measuring considerable 
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plant heights[19].  In the following part, various sensors for plant 
height measuring will be introduced. 
3.1.1  Plant height measurement based on stereo vision systems 

With stereo vision systems, high-resolution images of a plant 
can be obtained and 3D models can be generated by fusing images 
of different perspectives for measuring plant height.  Typically, 
fused images were collected from several different cameras or a 
moving camera (Figure 1), 3D models were established based on 
the relative positions of cameras.  Chen et al.[22] adopted binocular 
stereovision to monitor maize in the fields and then reconstructed 
the images in 3D to calculate plant height.  Many algorithms were 
put forward to make it possible to measure plant height with a 
single camera, structure-from-motion (SFM) and path-based 
multiple view stereo (PMVS) algorithms have great performance 
for stereo vision.  Jay et al.[21] estimated plant height with a single 
color camera and constructed a 3D model of the plant using the 
SFM algorithm, both color and 3D information were used to derive 
plant height.  Camera was also installed on a UAV to collect 
images from a large field of maize and sorghum[19], digital surface 
model was calculated with SFM to estimate plant height, but the 
results were not satisfactory, which may be caused by the 
insufficient images.  High-resolution and considerable overlap 
images are of great importance.  Santos and Rodrigues[23] 
employed PMVS to reconstruct 3D point of maize and estimated 
plant height by computing the distance between the farthest point 
and the fitting ground plane, the measuring error is inferior to 1%.  
Nonetheless, the accuracy and speed of the processing algorithms 
for stereo vision systems need to be improved.  Binocular stereo 
vision is positive correlated with measuring distances, and SFM is 
sensitive to wrong registration.  Stereo vision systems are also not 
robust against natural illumination because the limitations of color 
digital cameras, which restricts the outdoor applications of these 
systems. 

 
a. Several different cameras[20]    b. A moving camera[21] 

Figure 1  Plant height measuring 
 

3.1.2  Plant height measurement based on lidar/laser sensors 
Lidar or laser sensors have been used to measure plant height 

because they present good adaptation to illumination and provide 
considerable data.  Some studies have selected vehicle-based 
measurement and installed lidar to measure plant height.  Plant 
height can be derived from the point cloud data of lidar, including 
distance information collected from the plant canopy or plant side.  
Chatzinikos et al.[24] used a laser scanner to measure the properties 
of three plants.  Saeys et al.[25] adopted 2D lidar to measure wheat 
and used the histogram method to estimate plant density.  Zhang 
and Grift[26] used 2D lidar to detect the stem height of Miscanthus 
giganteus.  Given the measurement errors introduced by the 
inclination angles resulting from the installation of the sensor or the 
undulation of the ground, Zhang and Grift[26] analyzed and 

developed a correction algorithm based on the difference between 
the maximum and minimum ordinates.  However, travel speed 
and natural wind both affected the aforementioned studies, because 
high speed can diminish the data volume as a result of the 2D line 
scan nature.  On the other hand, 2D lidars are not robust in 
measuring the occlusion of plant organs, such as overlapping leaves 
and branches[9].  Owing to their ability to handle this situation, 3D 
lidars have been mounted at certain heights to observe plants in 
some studies[27,28].  Because the measurement error increases with 
the increase of the measurement distance, the appropriate distance 
and installation position of the 3D laser radar should be determined.  
To address this issue, the related tests and analysis were conducted 
by Ehlert and Heisig[29].  The results showed that plant surface 
generated based on point cloud becomes steeper with an increase in 
scan angle, as shown in Figure 2.  The accuracy of the point cloud 
data is the highest when 3D lidars scan small plants vertically, and 
the front angle represents the best angle for high plants.  Different 
from 2D lidars, 3D lidars are unaffected by a wide speed range, and 
the velocity of a vehicle has a negligible effect on the measurement 
results[30].   

 
Figure 2  Theoretical overestimate of reflection point height by 

lidar[29] 
 

Novel lidars with preferable performances have also been 
introduced to measure plant height.  A 3D lidar with four layers 
was adopted to measure the height of wheat and maize[30,31].  The 
lidar emits a pulse, and four photodiodes at different heights 
receive the return signals.  As a result, a pulse can acquire four 
echo signals, and the accuracy and data volume can be improved.  
Gao et al.[16] likewise adopted an airborne FWF lidar system to 
extract maize height through a UAV-based measurement.  Unlike 
lidar point clouds, which record limited strong peaks, a FWF 
contains all the return signals of a laser pulse[16], and different 
signals can be combined and analyzed.  UAV-based measurement 
can build a digital terrain model to improve measurement accuracy.  
Plant height can be acquired by taking the difference between the 
digital terrain model and the current UAV surface model[32-34], thus 
generating crop surface models.   
3.1.3  Plant height measurement based on ultrasonic sensors 

The measuring principle of ultrasonic sensors is similar to that 
of lidars.  Although the spatial resolutions of ultrasonic sensors 
are lower than lidars, the prices are relatively low.  And ultrasonic 
sensors are also not influenced by natural conditions because of its 
wavelengths, therefore, they are extensively used for outdoor 
measurement.  Plant height can be calculated by ultrasonic sensors 
using the difference method.  Sui et al.[35,36] utilized ultrasonic 
sensors for vehicle-based measurement coupled with a global 
positioning system (GPS) to measure the height of cotton plants 
and generate the height distribution maps.  Sharma et al.[18] used 
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ultrasonic sensors mounted on a two-wheel bicycle to measure 
maize height for yield estimation.  However, ultrasonic sensors 
are likely to be divergent and damped.  Their scanning accuracy is 
susceptible to the orientation and roughness of the sensing surface 
that data are easily lost.  The sensors usually installed 
perpendicular to the ground to ensure precision, but the upright 
leaves movement with wind will lead to different readings[6].  All 
of these factors result in the fact that ultrasonic sensors are not 
suitable to measure long range.  Recently, acoustic spectrum in a 
wide frequency range were applied, and the quality of the 
ultrasonic signals are significantly improved[37], which may 
promote its application.  To improve measurement accuracy, 
ultrasonic sensors can be also combined with lidars[38]. 
3.1.4  Plant height measurement based on range cameras  

Range cameras measure plant height based on its depth 
information.  An autonomous field robot mounted with PMD 
cameras was developed, and the plant height was monitored by 
calculating the histogram of distances[39].  However, the cameras 
are usually disturbed by natural illuminations, and the pixels of the 
images are low (e.g., 204×204 pixels for PMD CamCube).   

Besides depth information, color information provided by 
RGB-D camera makes it easier to remove background interference 
and identify plant.  Azzari et al.[40] used Kinect to characterize the 
vegetation structure, the normalized root-mean-squared error of 
plant height ranged from 2.7% to 19.1%.  Gai et al.[7] used Kinect 
to recognize plants and calculate their heights, the measuring error 
of maize within 2 cm.  Andújar et al.[41] applied Kinect to estimate 
the height of cauliflower, the deviation from the ground truth is less 
than 2 cm.  Kinect provides high-resolution images (e.g., 640× 
480 pixels and up to 1920×1080 pixels) even if its cost is lower 
than the aforementioned sensors.  In addition, the latest Kinect is 
robust against natural illuminations, and its applications in plant 
phenotyping are promising.   
3.1.5  Comparison and analysis of plant height measurements 

Compared with other sensors, the measurement accuracy of 
lidars is the highest because of the considerable amounts of data 
they acquire[42]; however, they are costly.  Although ultrasonic 
sensors have a price advantage, only few studies use these sensors 
because they generate huge amounts of invalid data.  Stereo vision 
systems require image calibration, and range cameras possess low 
resolution, so that the data may be lost after data processing.  
Illumination also has an effect on the measurement accuracy of 
both stereo vision systems and range cameras.  With the improved 
performance and algorithm, aside from its low cost and high 
accuracy, Kinect may be a good choice for plant height 
measurement.   

Vehicle-based measurement has significant benefits, and all 
the aforementioned sensors can be mounted on vehicles.  
Generally, GPS and encoders are selected as accessories to record 
the positions of the vehicles and plants in real time, and then an 
automatic navigation system can be applied.  However, uneven 
terrains are likely to affect the measurement accuracy.  The 
information reflected from the ground is mixed with the 
information on the plant canopy and introduces measurement 
interference, especially at the early growth stage of the plants.   

UAV-based measurement receives more attention because of 
its high efficiency and low cost.  But when the color camera was 
mounted on UAV, the UAV speed and the exposure time of color 
camera will affect the measurement accuracy.  Currently, lidars 
are extensively used for UAV measurement because of their high 
accuracy and data rate. 

3.2  Leaf angle / leaf area / leaf area index measurements 
   Leaf is one of the important parts of a plant.  It plays a 
significant role in plant growth because its growing status affects 
the efficiency of the direct solar energy utilization of plant.  
Therefore, leaf is a vital parameter in plant phenotyping.  
Numerous morphological parameters are associated with leaf, and 
those that are frequently measured in phenotyping include LIA or 
leaf angle distribution (LAD), LA, and LAI.  LIA refers to the 
angle between the zenith and the leaf surface normal and 
determines the quality of plant light interception.  LAD has an 
influence on the LAI measurement and represents the water stress 
of a plant[43].  LA refers to the area of a single leaf, and its 
estimation is significant to the biometrical observation (geometric 
features) of a plant.  LAI indicates the ratio of the summation of 
plant LAs per unit ground area.  LAI represents the vitality of a 
plant group and the canopy architecture, which results in 
photosynthesis and plant water use.  The aforementioned 
parameters are relevant to a plant in terms of biological and 
physical processes, such as photosynthesis, respiration, 
transpiration, and water use, as well as to grain yield.  LIA can be 
measured manually using a protractor.  Compared with that of 
LIA, the measurement methods of LAI and LA are complicated 
and arduous.  A leaf needs to be painted with paper in unit cells, 
and the number of cells can then be counted to obtain the area. 
   A few sensors and techniques for measuring leaf have been 
developed and implemented gradually for phenotyping to save time 
and minimize labor, which will be introduced in the following part. 
3.2.1  Leaf parameters measurement using color digital cameras 
and stereo vision system 
   Color digital camera is a low-cost imaging device and 
extensively used in various fields, including measuring plant leaves.  
Specifically, the color images of leaves are captured and processed 
with morphological operations, which can be used to calculate the 
parameters of LIA, LA, and LAI.  Deng et al.[44] used an image 
processing method to measure the leaf posture of maize.  Images 
were corrected and preprocessed firstly, and then the skeleton 
extraction was conducted to acquire the structure of stem and 
leaves.  Finally, LIA were obtained by calculated branch angles of 
skeleton.   
   Calculating LA according to pixels is a common method.  An 
et al.[45] used a color digital cameras to develop a pipeline and then 
to measure leaf length and rosette area.  Color correction and 
optical distortion correction were performed, the plant was 
extracted from background based on colors.  And then plant 
boundary was searched, the rosette area was calculated by 
computing the number of pixels.   
   Additionally, color digital cameras can be mounted on a UAV 
to measure plant area.  Traits of sorghum were estimated by 
Ribera et al.[46].  Images were mosaicked and segmented to verify 
plant center location, assess leaves number and LA.  But the plant 
leaves that connected to each other lead to the failure to evaluate 
individual plant.  It is a significant task to handle occlusion and 
intersection problems in color images and segment individual plant 
or leaf.  Scharr et al.[47] and Pape and Klukas[48] conducted studies 
about segmentation.  Plant leaves were abstracted, and then 
Euclidean distance images of leaves were calculated and skeleton 
images were generated.  Leaf center points, skeleton ending points, 
and skeleton branch points were checked to detect split line.  After 
that, watershed transform was used to segment individual leaf, 
overlap leaves were successfully separated, as shown in Figure 3.  
Color images are able to estimate the green cover fraction, previous 
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researches have shown that there is a relationship between the plant 
coverage and LAI.  Liu and Pattey[49] used top-of-canopy color 
images over a plant to estimate LAI, a model was built based on 
gap fraction, which was linearly related with LAI2000.   

 

   
 

a. Original image b. Image of individual leaves with 
different colors 

 

Figure 3  Leaf parameters measurement by color digital 
cameras[47] 

 

   Stereo vision systems were also introduced to measure leaf 
features.  The system, which was developed by Yeh et al.[50], 
consists of two off-the-shelf cameras with parallel optical axes.  
Images were rectified and registered, corresponding pointes were 
detected and matched.  Plants were segmented and LA was 
calculated by counting the pixels.  Leemans et al.[51] used 
stereoscopic images to build a model with distance information, 
LAI was segmented and calculated in the field.  Multi-camera can 
consist a multi-view stereo vision system, Zhang et al.[52] combined 
four images taken at different positions with SFM algorithm to 
reconstruct paprika plant in 3D and accurately estimated leaf 
lengths and widths, which can be used to measure LA[53,54]. 
3.2.2  Leaf parameters measurement using range cameras 
   Range cameras were tested to analyze the parameters of leaves.  
Depth images of a leaf captured by PMD and SwissRanger SR4000 
cameras were analyzed and compared under indoor (room) and 
outdoor (shadow and sunlight) conditions[9].  The results showed 
that determining the best possible integration times for each 
condition is necessary.  Depth information offered by ranger 
cameras was widely used to extract plants and leaves.  Song et 
al.[55] combined stereo and ToF images and conducted localized 
search to find the boundary of leaves.  Chéné et al.[56] proposed a 
segmentation algorithm of depth images captured by Kinect to 
extract leaf and measured its azimuth and zenith angles for plant 
phenotyping, as shown in Figure 4.  Additionally, Andújar et al.[41] 
separated crops from ground not only based on the height 
difference but also according to their colors.  Plant leaves were 
extracted and reconstructed in 3D.  Point cloud data were meshed 
and smoothed, then LAD, LAI and LA can be successfully 
estimated[55,57]. 

 
 

a. RGB image of plant b. Azimuth and zenith angles of leaves 
in the depth image 

 

Figure 4  Leaf parameters measurement by range cameras[56] 

3.2.3  Leaf parameters measurement using spectral sensors and 
cameras 
   A few vegetation indices can generally be derived based on 
the spectral responses of plant canopy.  In particular, 
non-destructive methods can be used to invert some parameters 
and indirectly calculate LAI, and typically, the most common 
parameter used to invert LAI is the NDVI[58].  New parameters 
were also presented in recent studies.  Hasegawa et al.[59] 
combined the hot spot-dark spot index and the NDVI, both of 
which are related closely with LAI.  They proposed a 
normalized hotspot-signature vegetation index (NHVI) to build 
the relationship with LAI, the results shown that NHVI has better 
performance in estimating LAI than NDVI.  In general, the 
spectral information in visible and NIR bands was used to build 
LAI model.  Neinavaz et al.[60,61] conducted some researches in 
the thermal infrared region (TIR).  Spectrometer was 
implemented to measure the spectral information of plants in the 
TIR.  In the region, spectra mostly came from the emissivity of 
plants rather than their reflectance.  Radiometric calibration was 
carried out to the measurement.  They found that the canopy 
emissivity spectra increased with rising LAI[60].  PLSR and 
ANN were applied to analyze the spectral data, the results 
indicated that the spectrum in TIR is able to retrieve LAI, but it is 
necessary to conduct further study in field conditions[61].  LAI 
also can be evaluated according to the plant coverage calculated 
from spectral images.  Dammer et al.[62] used multispectral 
camera to collect the plant reflections of light at red and infrared 
wavelengths.  Schirrmann et al.[63] gathered images from the red 
and NIR wavelength range of plants, and then NDVI images 
based on red and infrared images or red and NIR images were 
calculated.  NDVI images were processed to extract plants and 
calculate the plant coverage, then LAI was estimated according to 
the coverage.   
3.2.4  Leaf parameters measurement using lidar/laser sensors  
   Special attentions are increasingly given to lidar to measure leaf 
features.  Lidar can rapidly acquire the point cloud data of a leaf 
surface by using sensors to scan the plant canopy and leaves.  
Plant architecture can thus be generated under indoor or field 
conditions. 
   Considerable researches on plant 3D visualization and virtual 
plant have also been conducted for many years.  The 3D point 
cloud data and growth rules (e.g., L system) were applied to 
modeling, and some leaf parameters were calculated and extracted 
in this way.  All the results provide the basis for the following 
lidar measurement.  For lidar measurement, LIA, LA, and LAI 
can be obtained by surface computation.  Multi-view or 
multi-frame lidar data need to be registered and matched[64], and 
then can be used to reconstruct leaves in 3D (Figure 5).  A 
portable high-resolution scanning lidar was applied by Paulus et 
al.[66,67] under indoor conditions.  Barley was scanned by lidar in 
multi-view and reconstructed in 3D.  The leaves were meshed 
with triangles and the stems were fitted by cylinders.  Accordingly, 
LA and leaf angle were measured.  Hosoi et al.[68] used lidar to 
scan tomato and extract corresponding points, and then to estimate 
LA, LAI, and LIA.  Sirault et al.[69] developed a measurement 
system for phenotyping.  This system integrated lidar and other 
optical sensors to measure leaf in indoor conditions.  In terms of 
field measurement, Gebbers et al.[70] designed vehicle-based lidar 
sensors to analyze the relationship between LAI and plant height.  
Consequently, a regression model was built to estimate LAI 
rapidly.   
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a. Point cloud data of the wheat plant b. 3D reconstruction of each leaves

 

  Figure 5  Leaf parameters measurement by laser sensors[65] 

 

3.2.5  Comparison and analysis of leaf parameters measurements 
   The above mentioned measurement methods can be divided 
into two types according to the measurement principle of leaf.  
Color digital camera, stereo vision system, range camera, and lidar 
can measure or estimate leaf features by segmenting and 
reconstructing the leaf and calculating its actual values.  Spectral 
sensors and cameras can acquire leaf features through inferring on 
the basis of related parameters.  Compared with inference, 
reconstruction is more complicated and has costly computation 
operation.  However, the measurement accuracy of reconstruction 
is generally higher than that of inference.   
   Several problems encountered in practice that cause the 
measurement methods of LIA, LA, and LAI to be incomplete.  On 
the one hand, accomplishing the measurement of leaf according 
only to the single-perspective data is difficult.  Multi-perspective 
measurement is needed to reduce deviations.  On the other hand, 
leaves of the same plant or adjacent plants will block and overlap 
each other.  Current methods have difficulty classifying all leaves 
and settling this situation.  Consequently, measurement results 
usually tend to be underestimated.  
3.3  In-plant space measurements 
   Considerable previous researches showed that variations in 
plant spacing can affect the architecture and populations of plant, a 
phenomenon that leads to an uneven distribution of moisture and 
illumination, which, in turn, results in lower final grain yield[71].  
Measuring plant spacing provides a basis for breeders to explore 
the relationship between genotype and phenotype.  Conventional 
measurement methods are time consuming and laborious, which 
make automatic plant spacing sensing necessary.  Notably, plant 
localization is the premise of measuring in-plant space.   

In general, color digital camera was chosen to acquire the 
image of plant, and multiple consecutive images were processed 
and mosaicked to obtain the position distribution map[21].  
However, a color digital camera has difficulty separating individual 
plants.  To overcome the challenge, lidar, stereo vision system, 
range camera, and other sensors are implemented in this field.  Shi 
et al.[72,73] used a 2D lidar to measure maize stem in side-view 
dynamically.  The locations of each stem were obtained by fusing 
the encoder data.  In addition, ground irregularity, weed, and 
leaves resulted in the loss of data in the process of measurement.  
To obtain abundant information, 3D sensors were adopted.  
Compared with 2D sensors, 3D sensors could provide more 
comprehensive relative positions with minimal interference of 
terrain and obstacle.  Jin and Tang[74] used a stereo vision system 
consisting of two CCD imaging sensors to recognize maize in the 
V2-V3 growth stage.  They also processed and analyzed the depth 
image.  Plant center was localized according to its lower height 
and concave slope.  Located plant in top-view images is usually 

less accurate than side-view.  Nakarmi and Tang[71,75] developed a 
cart mounting with a ToF-based 3D imaging sensor and encoder.  
Side-view images were captured and stem locations were 
confirmed by processing the depth images, thus acquiring the 
in-plant space.  Different images were also mosaicked in two 
scenarios, and the distribution of row plants was generated.  Plant 
spacing could be obtained by calculating the distance between 
neighbor stems. 

4  Physiological phenotyping parameters measurement 

4.1  Chlorophyll measurements 
   Chlorophyll is the organic molecule of plant leaves and is 
regarded one of the key components in plant photosynthesis.  
Plant leaf nitrogen cannot be synthesized without chlorophyll.  
Some studies have found a high relationship between leaf nitrogen 
and chlorophyll because pigments determine most spectral features 
between 400-700 nm in a spectrum[76].  Moreover, reflection from 
this wave band primarily depends on the chlorophyll content of 
leaves and has a negative correlation with leaf nitrogen content[77].  
The nutritional and physiological statuses of a plant can be 
effectively estimated based on chlorophyll content.  Measuring 
chlorophyll is crucial for monitoring plant growth, promoting 
nitrogenous fertilizer usage, and guaranteeing high yield.   
   Kjeldahl Method has the highest accuracy among chlorophyll 
measurement methods and is deemed the most commonly used 
method to measure chlorophyll.  However, it necessitates a 
complex and time-consuming chemical analysis.  Leaves are also 
destroyed in the process of measurement, and the plant growth will 
be affected.  Rapid, non-destructive, and cost-effective measurement 
methods are, therefore, necessary. 
   As an alternative, spectrum technology has been applied to 
analyze the chemical components of plants because of its rapid and 
non-destructive advantages.  Various spectral sensors and cameras 
have been developed to measure plant chlorophyll.  In addition, 
researchers have acknowledged that fluorescence technology can 
measure chlorophyll according to the response of leaves to light.  
Some lidars or laser sensors with specific wavelengths and the 
capability to measure chlorophyll have also been developed.  In 
the following part, various sensors for chlorophyll measuring will 
be introduced. 
4.1.1  Chlorophyll measurement based on spectral sensors 
   The development of spectrum technology has resulted in an 
increasing number of mature products being introduced in the 
market.  Spectral sensors are the most frequently used instruments 
to assess vegetation status with visible and near-infrared light.  
Many studies have also been carried out using some typical spectral 
sensors that are passive-type or active-type to measure chlorophyll.  
Conventionally, some spectral vegetation indices were also 
calculated based on several spectral information in the different 
wavelengths to invert chlorophyll, these indices are revealed to be 
slightly superior to the normalized difference vegetation index 
(NDVI). 
   The passive-type sensors usually capture the reflectance 
spectrum of a plant to solar radiation, so these sensors are 
susceptible to ambient light and recommended to be used around 
noon under clear-sky conditions.  Bai et al.[78] mounted NDVI 
sensors and portable spectrometers on a field platform to measure 
chlorophyll.  The sensors and spectrometers are all consisted of an 
up-looking unit to measure solar radiation and a down-looking unit 
to detect reflected spectrum.  Up-looking values and 
down-looking values were integrated to calculate NDVI, and then 
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to estimate plant chlorophyll.  As a representative of passive-type 
sensors, Yara N-sensor is widely-used in measuring chlorophyll, 
which provided multi-spectral reflection of a plant.  There is also 
a spectrometer pointing sky to correct for the fluctuation in light 
intensity.  Raper and Varco[79] analyzed the multi-spectral 
reflectance and provided a simplified canopy chlorophyll content 
index to detect cotton chlorophyll, which indicated that reflectance 
in the red edge region strongly related with the leaf nitrogen status.  
ASD FieldSpec is also a portable device, whose wavelength is in 
the domain of 350-2500 nm, and is also capable of providing 
hyperspectral data.  Based on the hyperspectral reflectance data 
obtained through ASD, He et al.[80] estimated the nitrogen status of 
wheat by proposing the multi-angle vegetation index and pointed 
out that taking measuring angle into account is very important.  
Thorp et al.[81] estimated leaf chlorophyll with partial least squares 
regression (PLSR) approach, the results showed the performance 
was better than NDVI and the physiological reflectance index.  
Inoue et al.[82] compared the canopy chlorophyll of different plant 
types and regional scales, and found the ratio spectral index with 
the reflectance at 815 nm and 704 nm was robust to predict canopy 
chlorophyll content. 
   Conversely, GreenSeeker, CropCircle and other devices 
equipped with active spectral sensors have been widely used in 
agriculture, because they can tolerate severe environments.  The 
active sensors usually emit amber or red and NIR wavebands light 
due to their link to chlorophyll[83] and record the reflectance of 
several wavebands to calculate some vegetation indices to measure 
chlorophyll, primarily NDVI.  GreenSeeker and CropCircle were 
used by Barker[84] mounted on field-based phenotyping platforms 
to measure plant chlorophyll, the change in NDVI from night to the 
brightest noon was 0.046 for GreenSeeker and 0.0013 for 
CropCircle, which indicated that they were all not significantly 
affected by ambient light.  Kipp et al.[85] developed a method for 
measuring the early chlorophyll in winter wheat with the use of 
multispectral active sensors, including GreenSeeker and CropCircle.  
They also used RGB image analysis as a reference method and 
proposed a novel index, the early plant vigor index (EPVI), using 
single wavelengths values (670 nm, 750 nm and 862 nm) to 
evaluate early plant vigor.  GreenSeeker Model 505 (red at    
656 nm and NIR at 774 nm) and CropCircle ACS-210 (amber at 
590 nm and NIR at 880 nm) were used to collect red and amber 
canopy NDVI values of winter wheat at three growth stages by 
Samborski et al.[83], they found that genotype has an effect on both 
red NDVI values and amber NDVI values at Zadoks 37 to 39 
growth stages, and only on amber NDVI values at 55 to 71 growth 
stages.  CropCircle ACS-210 and ACS 430 (red at 630 nm, 
red-edge at 730 nm and NIR at 780 nm) were compared by Taskos 
et al.[86], different NDVI values were calculated and analyzed in 
each individual waveband.  The results demonstrated that 
ACS-430 indices and red edge-based indices were more strongly 
correlated with leaf chlorophyll of vineyards.  The new 
CropCircle ACS-470 provides filters to select different 
wavelengths and vegetation indices were also highly related to 
plant nitrogen[87], red edge-based indices performed better than 
NDVI and ratio vegetation index[86].  But plant height, measuring 
distance, temperature, and reflectance from soil or adjacent rows 
affect the performance of active sensors, the optimal measuring 
distance should be adjusted depending on plant architecture and the 
growth stage, and the distance of sensors beyond 40 cm from the 
canopy is appropriate[88-91].  In addition, reflectance indices were 
less sensitive at the late growth stages of plants with the reduction 

in the NIR reflectance from canopy[83,87].   
   Among all of the active-type and passive-type spectral sensors, 
GreenSeeker, CropCircle, and N-sensor are the most commonly 
used for on-the-go in real-time measurement of plant chlorophyll, 
all of them could be mounted on a platform and suitable for 
high-throughput phenotyping.  Raper et al.[90] tested N-sensor, 
GreenSeeker Model 505, and CropCircle ACS-210, they found that 
N-sensor and CropCircle ACS-210 were less sensitive than 
GreenSeeker Model 505 at the early growth stage of pants when 
the NDVI values were small, while N-sensor and CropCircle 
ACS-210 have better performance than GreenSeeker Model 505 at 
the late growth stages when NDVI values were higher than 0.6.   
4.1.2  Chlorophyll measurement based on spectral cameras 
   Unlike common spectral sensors, multispectral or hyperspectral 
cameras can measure canopy spectral reflectance in wide 
wavebands with high spatial resolution images (Figure 6), making 
it possible to extract plant from background with image processing 
and derive numerous vegetation indices exactly.  Based on these 
advantages, spectral cameras have been extensively applied to 
estimate and predict plant chlorophyll.   

 
Figure 6  Structure of hyperspectral image data cube[92] 

 

   Spectral cameras mostly can capture visible and NIR light 
spectrums, and are suitable for vehicle-based, UAV-based, and 
satellite-based measurement.  However, the radiometric and 
geometric corrections, even the atmospheric corrections are needed.  
Similar to spectral sensors, NDVI is also the most frequently 
derived vegetation index to measure chlorophyll.  Bourgeon et 
al.[93] mounted a visible and NIR multispectral camera on a tractor 
to assess vineyard.  Considering ambient light variation, a 
calibration method was proposed for multispectral images to 
produce reflectance images.  A color chart was used as a 
radiometric reference in RGB and NIR images, red and NIR 
spectral channels were chosen to calculate NDVI values and 
generate NDVI images.  And then the segmentation algorithm was 
applied to NDVI images in order to distinguish leaves from 
background.  Average NDVI value of leaves was calculated as a 
spatial representation of the region.  In recent years, more and 
more researches applied multispectral cameras and hyperspectral 
cameras on UAV to capture canopy reflectance data for measuring 
plant chlorophyll.  And the radiometric correction was done firstly 
to convert the raw digital numbers to radiance values.  Then, the 
atmospheric correction, namely the Fast Line-of-Sight Atmosphere 
Analysis of Spectral Hypercubes (FLAASH), was carried out to 
remove the atmospheric effects of absorption and scattering.  
Finally, the geometric correction was applied to correct the offset 
between the airborne data and ground spectra[94].  The spatial 
resolution of images can achieve decimeter, and all of the images 
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can be also mosaicked together for a better understanding of the 
measured region[95,96].  Elarab et al.[95] calculated the vegetation 
indices, selected LAI, NDVI, thermal and red bands as inputs of 
relevance vector machine algorithms to spatially estimate oat 
chlorophyll with a root-mean-squared-error of 5.31 μg/cm2.  
Kalacska et al.[97] developed a model that comprised a continuous 
wavelet transform with a neural network to predict chlorophyll 
with R2 value ranging from 0.8 to 0.9. 
   Satellite spectral imager can provide spectral images that cover 
large sized plots, but the spatial resolution is lower and the sample 
period is longer than vehicle-based and UAV-based measurement.  
Houborg et al.[98] analyzed hyperspectral images from the Earth 
Observing-1 satellite with a 30 m ground resolution.  Images were 
conducted radiometric and geometric correction, and atmospheric 
correction was also carried out with the FLAASH algorithm to 
retrieve water vapor and correct adjacency effects.  And then 
vegetation indices were calculated for multiple parameters 
regression to assess chlorophyll.  Some indices, particularly in the 
red-edge bands, played an important role in improving the 
robustness of chlorophyll retrieval.   
4.1.3  Chlorophyll measurement based on fluorescence sensors 

Chlorophyll fluorescence (ChlF) is emitted by chlorophyll 
shortly after plants absorb light.  It mainly comes from 
photosystem II, which offers a promising method for measuring 
plant chlorophyll content.  ChlF signals could be divided into the 
red fluorescence (RF) and the far-red fluorescence (FRF).  The 
ChlF ratios of RF and FRF are usually used to estimate plant 
chlorophyll. 

ChlF measurements contain active fluorescence-based 
measurement and passive reflectance-based measurement.  Active 
fluorescence-based measurement based on the pulse-amplitude 
modulation or the laser-induced fluorescence (LIF) transient 
method, whose measuring range can up to several meters.  Passive 
reflectance-based measurement derives ChlF with the use of 
sun-induced fluorescence (SIF) method[99].  Active fluorescence- 
based measurement has advantage over passive reflectance-based 
measurement in tolerating ambient light, so many researches 
applied this measurement. 
   LIF is an active sensing technique wherein leaves are excited 
by laser sensors and then re-emit fluorescence, which is widely 
used in measuring chlorophyll.  Yang et al.[100,101] used the 
ultraviolet (UV) laser to induce fluorescence and measured the 
intensity of fluorescence peaks at 685 nm and 740 nm to estimate 
paddy rice nitrogen content with back-propagation neural network 
and support vector machine (SVM) models.  They found that the 
intensity of fluorescence peaks were more sensitive and accuracy 
than the fluorescence ratios in estimating nitrogen content.  The 
Multiplex fluorescence sensors were used to measure the nitrogen 
status by Agati et al.[102,103], and Longchamps and Khosla[104].  
The sensors provided the flavonol index, the chlorophyll indices 
and the nitrogen balance indices (NBI) that were calculated based 
on the ratio of RF and FRF induced by UV, red, green, or blue light.  
One of the NBI was highly relation to leaf nitrogen content and not 
affected by seasons[102].  Longchamps and Khosla[104] also 
conducted some tests for the Multiplex fluorescence sensor, and 
verified the fact that the fluorescence sensors can measure the 
variation of chlorophyll at the early stage of plant.  And soil has 
less impact on the measurement if plant height is higher than 20 cm.  
In order to investigate the influence of light intensity and 
temperature, Thoren et al.[105] tested LIF measurements under field 
and controlled laboratory conditions.  Studies showed that the 
chlorophyll content of plant leaves is strongly related to the ratio of 

the two peaks of ChlF at 690 nm and 730 nm, and the ratio 
decreased linearly with an increase in light intensity up to 23°C.   
4.1.4  Chlorophyll measurement based on lidar/laser sensors  

Blue and red light are essential partners for plant 
photosynthesis, which would be absorbed by chlorophyll and 
carotenoids, and most green light was reflected.  Some research 
has proved that the reflectance of green light is sensitive to the 
variation in plant chlorophyll, canopy reflectance at 550 nm will 
increase with the reduction of chlorophyll[106].  Based on the study, 
Eitel et al.[107-110] conducted many researches on the use of green 
(532 nm) laser sensor to measure leaf chlorophyll and nitrogen.  
The reflectance intensity values were recorded to calculate 
chlorophyll.  However, there are many factors that influence the 
measurement accuracy.  In order to improve the measurement 
accuracy, the process can be divided into the following steps.  
First, the laser reference intensity was normalized by using a white 
reference panel to correct the drift of laser intensity [108].  Second, 
the soil and edge returns were removed based on an intensity 
threshold[107].  Third, it is necessary to keep the distance between 
the laser sensor and plant constant[110].  The results indicated that 
green laser intensity was strongly correlated with chlorophyll and 
nitrogen content.  Furtherly, a multi-wavelengths laser system was 
tested and the ratio of green and red laser return intensities was 
used to measure plant nitrogen.  But the results were not 
significantly improved compared with previous researches, which 
may be caused by aggravating the leaf angles effects.   
   With the development of lidars, the hyperspectral lidar was 
introduced to measure plant chlorophyll or nitrogen.  This kind of 
lidar works based on wide-spectrum emission and is able to 
produce point cloud data with spectral information (Figure 7).  
The performance of ASD FieldSpec, multispectral lidar and 
hyperspectral lidar were compared by Sun et al.[112], and the results 
demonstrated that hyperspectral lidar has the best performance in 
estimating plant nitrogen.  Nevalainen et al.[113] used hyperspectral 
lidar to estimate leaf level chlorophyll.  Points that had low NDVI 
values were filtered and vegetation indices were calculated for 
linear regression analysis to estimate chlorophyll.  The results 
demonstrated that the modified chlorophyll absorption ratio index 
(MCARI), which was calculated by using reflectance at 750 nm 
and 705 nm, has the best performance in measuring needle-leaf 
chlorophyll.  Du et al.[114] recorded the reflectance intensity of a 
hyperspectral lidar and selected characteristic wavelengths to 
estimate nitrogen contents with SVM regression.  They proposed 
that considering more wavelengths as inputs in the regression can 
significantly improve measurement accuracy.  Furthermore, they 
combined hyperspectral lidar data and LIF data to detect 
nitrogen[115].  With the use of SVM regression, PLSR and two 
artificial neutral networks (ANN), the determination coefficients 
were high.  In addition, they found that the reflectance spectrum 
performs less well in predicting plant chlorophyll when the leaf 
nitrogen content is high.   

 
Figure 7  3D point cloud with a hyperspectral texture at different 

views [111] 
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   Recently, Ounis et al.[116] described a new lidar system that 
combing LIF and SIF, which may provide help to measure 
chlorophyll in the future. 
4.1.5  Comparison and analysis of chlorophyll measurements 

Chlorophyll measurement has always been the priority of 
considerable research, and the related spectral products and sensors 
have been implemented widely for such task.  Spectral 
measurement is usually disturbed by ambient conditions, especially 
sun illumination, and the performance of active sensors is better 
than that of passive sensors.  Previous studies have demonstrated 
that the reflected spectral information from soil can affect the 
spectral determination of chlorophyll at the early stages of plant 
growth because soil coverage is low at such an early development 
stage[85].  Owing to the abundant spectral information, 
hyperspectral or multispectral sensors and cameras can probably 
eliminate background interference by deducing some vegetation 
indices.  Hyperspectral or multispectral cameras can be not only 
used on vehicle, but also mounted on UAV or satellite, making it is 
possible to realize large-scale measurement by mosaicking 
multi-frame images.  Image processing methods can be applied to 
extract vegetation and remove background interference.  But the 
volume of data captured by spectral cameras is tremendously large 
due to the high data rate, especially in the UAV measurement, 
which needs laborious offline processing.  ChlF measurement is 
more sensitive to the variation of chlorophyll than vegetation 
indices.  Compared to spectral sensors like GreenSeeker or 
CropCircle, the field of view of Multiplex fluorescence sensor is 
smaller, as shown in Figure 8.  Reflectance almost comes from 
plant vegetation, which gives rise to that ChlF measurement is 
independent of distance and soil.  In addition, the intensities of 
fluorescence at about 690 nm and 740 nm are largely used to 
analyze and estimate plant chlorophyll. 

 
Figure 8  Comparison the field-of-view (FOV) of ChlF and 

spectral sensors [104] 
 

The measurement accuracy of laser sensors is mainly depends 
on the reflectance intensity that is affected by various factors, such 
as temperature, leaf edge, measuring angle, and leaf roughness.  
Further research is needed.  Hyperspectral lidar provides help for 
us to measure chlorophyll in spatial and temporal scales and 
broadens the potential application of lidars. 
4.2  Water stress measurements 

Global warming and water resources shortage have resulted in 
the inevitable reduction of grain yield.  In the increasingly crucial 
task of conducting research on the water use efficiency of plant, 
water stress is an important parameter for assessing plant drought 
water status.  Stomatal conductance and leaf water potential (LWP) 
are vital indictors of plant water stress, and canopy temperature is a 

surrogate for stomatal conductance[117], crop water stress index 
(CWSI) is successfully related to LWP[118].  Generally, water 
stress can be measured by two methods, one is based on canopy or 
vegetation temperature, the other is based on canopy or vegetation 
reflectance.  Thermal infrared technique is an effective method to 
investigate canopy temperature.  Spectral technique is widely used 
to measure canopy reflectance.  Typically, thermometer, 
thermography, spectral sensors and cameras are implemented to 
evaluate water stress, the related methods will be described as follow. 
4.2.1  Water stress measurement based on thermometer 
   Thermometers can be mounted on some phenotyping platforms 
to monitor plant canopy temperature[78,84], whose measuring region 
is concentrated and small that contribute to reduce interference.  
Although ambient light does not affect thermometers due to its 
measured radiations are in the long-infrared, ambient temperature 
has a significantly effect on thermometers reading.  Tests 
conducted by Barker et al.[84] showed that thermometer reading was 
higher than the surface temperature when the ambient temperature 
was high, and the thermometer will underestimate the actual 
temperature when the ambient temperature was low.  Therefore, 
they put forward a correction method based on the ground truth 
measurement with the use of thermocouple to reduce the 
measurement error.   
   Vegetation temperature is usually lower than ambient 
temperature, but when the vegetation fraction is small, especially at 
the early stage of plants, soil temperature is higher than ambient 
temperature during middays that disturbing the measurement.  In 
order to reduce the influence from soil, Rischbeck et al.[119] used 
two thermometers to measure canopy temperature with the opposed 
oblique views at an angle of 45 degrees from the nadir.  This 
measurement was capable of increasing the biomass proportion in 
the field of view.  The actual, the lowest and highest canopy 
temperatures were used to calculate CWSI.  Besides, some 
researches collected ambient temperature to correct thermometer 
values, Ni et al.[120], Kim et al.[121] and Bai et al.[78] regarded the 
difference between canopy temperature and air temperature as an 
indicator of water stress to assess plant growth. 
4.2.2  Water stress measurement based on thermography 
   Infrared thermography is considered as a high-throughput tool 
for measuring plant temperature to estimate the plant water stress, 
which provides great help for us to evaluate spatial and temporal 
water variability of plants.   
   Thermal images captured by thermography usually contain 
canopy temperature and background temperature, it is a critical 
problem to eliminate the background noises of thermal images.  
Normally, one empirical method is based on the temperature 
differences between canopy and background to separate canopy.  
Measuring time during the day should be taken into account 
because of the variable environment.  In the morning, the 
temperature difference between soil and canopy was small, leaf 
water potential was unstable, and solar angle was not optimal.  
Conversely, LWP was more stable due to stomatal closure and the 
most leaves were exposed to sunlight around midday, thermal 
images contained the highest temperature differences and were 
suitable to assess the canopy water stress[122].  The other method 
for the separating canopy from background was simultaneously 
collect thermal and color images of canopy[123-125].  Thermal and 
color images were aligned registered, and then canopy can be 
extracted based on segmentation algorithms of color image 
processing.  The method is able to handle the situation that is 
difficult to identify the leaves and shaded soil just on the basis of 
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temperature and improve the measuring efficiency of canopy 
temperature.  In addition, thermal image resolution plays an 
important role in eliminating inaccurate temperatures, especially 
the temperatures correlated to the edge pixels that contain both 
canopy and background[117].   
   Infrared thermography can be applied on vehicle-based[123], 

UAV[118,126] and greenhouse[127].  Thermal images of plant and 
environmental parameters were collected synchronously, and 
thermal images need to be calibrated with radiometric correction.  
After canopy temperatures were calculated, CWSI, LWP, vapour 
pressure deficit (VPD) and other parameters would be applied to 
evaluate plant water stress (Figure 9). 

 
Figure 9  Spatial CWSI images[127] 

 

4.2.3  Water stress measurement based on spectral sensors and 
cameras 
   Researches was conducted by Buitrago et al.[128] to investigate 
the changes in thermal infrared spectra of plants caused by water or 
temperature stress.  They found that water stress and temperature 
stress created a similar spectral response, the emissivity in 
mid-infrared decreased with water loss.  And many spectral 
sensors were applied to measure canopy temperature or water stress 
of plants.  Elsayed et al.[129] tested a hyperspectral passive sensor, 
a hyperspectral active sensor, an active flash sensor, a CropCircle, 
and a GreenSeeker to assess the normalized relative canopy 
temperature (NRCT) that was similar to the CWSI introduced by 
Rischbeck et al.[119], and the spectral indices of all sensors strongly 
in correlation with NRCT.   
   Assessing the water stress of plants based on spectral indices 
was a principle method for spectral sensors and cameras, but the 
internal structure of leaf affects the sensitivity of these indices.  
Taking advantage of the spectral reflectance at the specific 
wavelengths collected by spectrometer, Bandyopadhyay et al.[130] 
proposed and calculated different water stress indices to 
characterize the water stress of wheat.  Winterhalter et al.[131] 
evaluated a series of spectral indices to estimate canopy water mass 
of maize and the global coefficients of determination of several 
indices were over 0.70.  In addition, hyperspectral camera was 
also used.  Moshou et al.[132] extracted spectral features from 
hyperspectral images to detect the water stress of wheat.  They 
applied least squares SVM to analyze spectral data and selected six 
indices whose central wavelengths at 503 nm, 545 nm, 566 nm, 
608 nm, 860 nm and 881 nm, respectively.  Rossini et al.[133] 
acquired hyperspectral data from airborne imagery and verified that 
photochemical reflectance index had good performance in 
measuring water stress.   
4.2.4  Comparison and analysis of water stress measurements 
   The measuring region of thermometer is small and the 
measurement accuracy depends on the vegetation.  Thermography 
is able to provide temperatures of a region, offering an opportunity 
to directly monitor the global variations, especially in the UAV 
measurement.  However, the region of interested of thermal image 
was determined manually in general[127], and the view field of 

sensors also has an effect on the measurement of canopy 
temperature [134] and the resolution of thermal resolution need to be 
improved.  Although some spectral indices were closely related to 
water potential and stomatal conductance, canopy temperature and 
relevant parameters were still recommended as the best indicators 
of water stress[133,135]. 

The measurement of water stress still presents some problems 
that need to be solved.  First, thermal measurement is easily 
affected by dynamic variations in environmental factors, including 
solar radiation, cloud cover, wind speed, air temperature, humidity, 
VPD, etc [136], and the time of measurement also influence the 
results, all of these interferences should be taken into account.  
Second, canopy temperature changes vary with canopy architecture, 
plant height, soil coverage, leaf angle and other factors, all of 
which need to be considered.  Combining different sensors or 
parameters together to measure water stress is feasible in order to 
improve the accuracy.  Besides, fluorescence was also put forward 
to measure water stress, which is more sensitive to water 
stress[119,137].   
4.3  Biomass measurements 
   Plant biomass is defined as the total fresh or dry weight of plant, 
including the above-ground and below-ground parts.  Plant 
biomass is an important ecological indicator for various aspects, 
such as plant architecture, photoabsorption, and carbon assimilation.  
Given that measuring the below-ground biomass is difficult, 
therefore, most studies focus on measuring the above-ground 
biomass.  On the one hand, the above-ground biomass can 
demonstrate the nutritional status and nitrogen utilization of a plant.  
On the other hand, breeders generally regard the above-ground 
biomass as a reference to estimate the growth of plant root.  In 
general, the above-ground biomass can be estimated using 
destructive, non-spectral, or spectral methods[138].  Destructive 
methods need to harvest, prune, dry, and weigh plants.  This 
process is complicated and time consuming, but the results are 
usually served as criteria for the latter two methods.  Non-spectral 
and spectral methods mostly measure certain plant parameters and 
develop prediction models to estimate the above-ground biomass.  
The commonly measured parameters are plant height, chlorophyll, 
LAI, and a few vegetation indices.  These parameters can be 
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obtained according to the methods mentioned in the previous 
sections.  The following sections will introduce the measurement 
methods of biomass in detail.   
4.3.1  Biomass measurement using non-spectral method 
   Non-spectral method focuses on measuring the plant height.  
Similar to the trunk in trees[139,140], the plant stem accounts for the 
majority of the entire plant weight.  Given that plant height is 
basically up to the stem, height is one of the significant parameters 
for above-ground biomass prediction model in a few studies[141-144].  
Lidar was adopted to measure the height of rice, oilseed rape, 
winter rye, winter wheat, and grassland.  Linear regressions were 
conducted, and the results demonstrated strong coefficients of 
determination between above-ground biomass and plant height in 
the range of 0.60-0.99[141,144].  Fricke et al.[145] installed an 
ultrasonic sensor on a vehicle to measure sward height.  The 
results were used as the input data to predict forage biomass, and 
the mean residuals ranged between 0.893 and 1.672.  Notably, the 
accuracy was high if no mixture was present in the sward.  
Estimating biomass based on plant height is promising but the 
further improvements are needed.  Vegetation coverage should be 
considered[143], especially at the early growth stage of plant.  Li et 
al.[146,147] used airborne lidar to derive the LAI and height of maize 
in northwest and north China, and then estimated biomass, thus 
improving measurement accuracy and efficiency. 
4.3.2  Biomass measurement using spectral method 

Spectral methods mostly measure certain vegetation indices and 
nitrogen content of a plant using numerous spectral sensors or 
cameras.  Nitrogen status is a primary component of plants and 
plays a vital role in contributing to biomass.  Biomass accumulation 
is strongly related to nitrogen application rates[148].  NIR regions 
were applied to measure nitrogen and estimate biomass.  SPAD and 
ASD FieldSpec were widely used, and prediction models were 
developed based on the hyperspectral reflectance of plant 
canopy[149-151].  Gnyp et al.[152,153] proposed a vegetation index with 
the use of a multi-band combination in the NIR and short-wave 
infrared domains to develop biomass model, which can improve the 
estimation of above ground biomass.  Furthermore, Mistele and 
Schmidhalter[154,155] conducted a few vehicle-based measurement 
studies by using spectral sensors.  Erdle et al. [156] compared a 
bi-directional passive radiometer and three active sensors 
(CropCircle, GreenSeeker, and an active flash sensor) and calculated 
several vegetation indices.  The results demonstrated that the active 
sensor is more flexible.  Parameters related with nitrogen, such as 
NDVI and simple R780/R740 ratio[154-156], are strongly related to 
plant biomass.  Considerable research also showed that the canopy 
architecture has an effect on the estimation of biomass, the 
correlation coefficient between LAI and biomass was 0.96[156], and 
the vertical biomass distribution of maize is a bell shape.  Hence, 
considering the canopy parameters is necessary to estimate plant 
biomass[151].   
4.3.3  Combined method for biomass measurement  
   The potential of combining non-spectral and spectral methods to 
estimate above-ground biomass is currently being explored.  Plant 
height and several indices related with nitrogen content are being 
used to refine the prediction models and improve the estimation of 
above-ground biomass.  At the early stage of maize, Montes et 
al.[157] employed light curtain and spectral reflectance sensor to 
estimate biomass with SVM regression from V4 (collar of 4th leaf 
unfolded) to V8 (collar of 8th leaf unfolded).  The results showed 
very high values of repeatability.  Freeman et al.[158] used 
GreenSeeker to collect NDVI and combined it with plant height to 

predict biomass during the V8 to V10 (collar of 10th leaf unfolded) 
stage of maize.  Hyperspectral measurement with ASD FieldSpec 
can be used to calculate vegetation indices, such as NDVI, 
normalized reflectance index, renormalized difference vegetation 
index, and red edge inflection point.  These indices fused with plant 
height derived from lidar or ultrasonic can be used to estimate 
biomass[149,159].   
4.3.4  Comparison and analysis of biomass measurements 
   Studies have shown that plant height is a significant parameter 
for estimating plant biomass.  This parameter is also the 
measurement key of the non-spectral method.  Water and nitrogen 
concentration of plant will affect the estimation of biomass.  These 
two parameters can be measured by spectral methods, but the results 
will be disturbed by weather, vegetation coverage, and soil.  Plant 
height as well as nitrogen and water concentration are regarded as 
the fundamental parameters for estimating plant biomass.  These 
parameters can be combined to estimate plant fresh weight and dry 
weight, and thus to improve the accuracy and robustness of 
measurement. 

5  Comprehensive phenotyping platforms 

Although there is a wealth of researchers pay attention to 
measuring phenotyping parameters, most studies just focus on one 
or a limited number of parameters.  In order to facilitate 
high-throughput phenotyping, the usability of comprehensive 
phenotyping platforms that are able to measure multiple phenotypic 
traits should be further investigated.  Numerous research 
institutions have already developed some phenotyping platforms 
that integrate various sensors.  In terms of measurement type, these 
platforms could be classified into two types, one is the vehicle-based 
platform, the other is the aerial platform.   
5.1  Vehicle-based phenotyping platform 

In general, the vehicle-based phenotyping platform was driven 
by a tractor or human pull[160-162].  Sensors were installed on 
different positions and heights of platforms in accordance with the 
plant varieties and the growth stages.  Additional accessories 
include power system, data collection terminal, GPS receiver, 
encoder and others, which are also necessary for the vehicle-based 
system to work.  Several representative phenotyping platforms are 
illustrated in Table 4, including “BreedVision” designed by 
Busemeyer et al.[163], “Phenomobile” designed by Deery et al.[164], 
and two platforms based on tractors[160,161].  Phenotype 
measurement research has large value for application as well as 
vast market potential and development prospects, many 
commercial applications have been developed by companies.  As 
listed in Table 4, Blue River Technology designed a vehicle-based 
measuring platform with several sensors and multiple observed 
views[162], LemnaTec developed the Scanalyzer Discovery platform 
for field phenotyping[165]. 

Besides aforementioned platforms, the vehicle-based phenotyping 
platforms also include the autonomous robot platform.  Many 
robot platforms were developed to minimize human labor and 
improve work efficiency.  The robot platforms are mainly suitable 
for measuring maize and sorghum.  Lidar and color digital camera 
were used to measure phenotyping parameters and detect plant 
stems simultaneously.  Navigation lines were generated based on 
the stem locations.  As listed in Table 5, the representative 
autonomous robot platforms include “Vinobot”[166], “BoniRob”[167,168] 
and “Robotanist”[169].  The advantage of the robot platforms is that 
they are able to collect plant information during the day and night.  
In addition, the size of the robot platforms is small. 
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Table 4  Description of the vehicle-based phenotyping platforms 

Research institution Sensor type Phenotype parameter 

University of Applied Sciences  
Osnabrück[163] 

Color digital camera, Range camera, Laser sensor, Hyperspectral camera, 
Light curtain, GPS receiver, Rotary encoder 

Plant height, Plant coverage, Tiller density,  
Nitrogen 

University of Arizona[160] Sonar sensor, Multispectral camera, Crop Circle ACS-470, Infrared 
radiometer, GPS receiver 

Plant height, Chlorophyll, NDVI, Canopy 
temperature 

Kansas State University[161] Laser sensor, Crop Circle ACS-470, GreenSeeker, thermometer,  
Ultrasonic sensor, GPS receiver Plant height, Canopy termperature, NDVI 

High Resolution Plant Phenomics  
Centre[164] 

Color digital camera, Lidar sensor, GreenSeeker, Hyperspectral camera, 
Thermometer, Thermography, GPS receiver, Wheel encoder 

Plant height, NDVI, LA/LAD, Biomass, Canopy 
temperature 

LemnaTec[165] Color digital camera, Laser sensor, Hyperspectral camera, Thermography, 
Fluorescence sensor, CO2 sensor, radiometer 

Plant height, NDVI, Nitrogen, Plant coverage,  
Water stress 

Blue River Technology[162] Color digital camera, Lidar sensor, Multispectral sensor, Thermography, 
pyranometer, GPS receiver 

Plant height, NDVI, Leaf angle, LAI, Canopy 
temperature 

 

Table 5  Description of the autonomous robot phenotyping platforms 

Platform Sensor type Phenotype parameter 

Vinobot [166] Stereo camera, Lidar sensor, GPS receiver, RFID reader, pyranometer, 
Temperature sensor, Humidity sensor Plant height, LAI 

BoniRob [167,168] Color digital camera, Range camera, Lidar sensor, Hyperspectral camera, 
Light curtain, GPS receiver, Rotary encoder 

Plant height, Plant coverage, Spectral reflection, Biomass, 
Stem thickness, Spacing in the row 

Robotanist [169] Color digital camera, Stereo vision, Range camera, Lidar sensor, GPS 
receiver, Attitude and heading reference system Leaf angle, Plant greenness 

 

5.2  Aerial phenotyping platform 
The aerial platform was first applied on the plant phenotype 

measurement a few years ago.  Notably, the measuring area and 
the measuring efficiency of aerial platform are more extensive than 
those of vehicle-based measurement.  The aerial platform is also 
universal to most plants.  Typical types of the aerial platform are 
aircraft, rotary wing, fixed wing, and helicopter.  Aircraft is 
difficult to be moved and is easily obstructed by wind.  Rotary 
wing aerial vehicle is flexible and can fly at any altitudes with low 

speed.  Fixed wing aerial vehicle has long flight time, but its 
speed and flight altitude are high, which may result in image loss[4].  
The helicopter structure is complex and the maintenance tasks are 
heavy[170].  Among the aerial platform, rotary wing aerial vehicle 
and fixed wing aerial vehicle are the most widely used.  Limited 
to the payload, sensors installed on the aerial phenotyping platform 
is less than the vehicle-based platform, and several representative 
phenotyping platforms are illustrated in Table 6. 

 

Table 6  Description of the aerial phenotyping platforms 

Country Type Sensor type Phenotype parameter 

Switzerland[171] Aircraft Color digital camera, Multispectral camera, thermography LAI, NDVI, Plant coverage, Canopy temperature 

Americ[81] Rotary wing 
Fixed wing 

Color digital camera, Multispectral camera, GPS receiver, Inertial 
measurement unit Plant height, NDVI, LAI 

Australia[170] helicopter Color digital camera, Multispectral camera, thermography Plant coverage, Crop lodging, Canopy temperature 
 

5.3  Comparison and analysis of phenotyping platforms 
The vehicle-based platforms could measure plant phenotyping 

parameters with close distance, and a high performance terminal 
that could receive and process all kinds of sensor data is of great 
importance.  Lidar, GPS, gyroscope, and other sensors make 
automatic navigating possible, as well as generate the phenotypic 
character distribution map of plant.  However, a vehicle-based 
platform has the potential to damage a plant, especially at the late 
stage of a plant.  Every platform is unique and will be restricted 
by row space, in-plant space, and plant height.  Hence, these 
platforms can have difficulty measuring different types or stages of 
plant.  Although the image resolution, security and payload of the 
aerial platform still have to be improved, this kind of platform has a 
large application potential in plant phenotyping[4,172]. 

6  Conclusions 
Phenotype measurement research can improve the efficiency of 

genomic research and promote its development.  In this paper, the 
measurement methods of several morphometric and physiological 
parameters in phenotyping are summarized.  Related sensors are 
introduced and existing problems are discussed. 

Phenotyping and measuring methods have developed rapidly, 
but the automaticity in collecting data to screen large-scale plant 
populations under field conditions is required to promote.  Thus, 
the rapid and high-throughput measurement methods are needed.  
In line with this requirement, current research aims to integrate the 
related sensors and collect data automatically.  A few of the 
above-mentioned sensors can measure several parameters 
simultaneously.  Therefore, optimizing their installed position and 
angles to exploit the performance adequately is significant.  And 
fusing multiple data (e.g., color data, depth data, spectral data and 
so on) provided by one sensor or several sensors will contribute to 
the data processing and the phenotyping parameters extracting.  
On the other hand, considerable current research is faced with 
various problems that significantly affect the measurement 
accuracy.  Improving the applicability and robustness of sensors 
for complex field and varying environment is particularly vital.  
As mentioned previously, sensors can provide abundant 
information on plant, but the data volume is large and computation 
is time consuming.  The current algorithms should be optimized 
and innovated urgently to raise data management and 
computational efficiency.   
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Monitoring the growth environment of plant is also necessary.  
Parameters such as soil nutrient, ambient temperature and humidity, 
and solar radiation should be recorded to build a corresponding 
database for analyzing the relationship between phenotyping and 
genotyping of plant.  In addition, root is an essential part for plant 
growth, special attention should be given to developing rapid and 
non-destructive measuring methods for plant root in the future.   
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