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Abstract: Agricultural remote sensing has been developed and applied in monitoring soil, crop growth, weed infestation, 

insects, diseases and water status in farm fields to provide data and information to guide agricultural management practices.  

Precision agriculture has been implemented through prescription mapping of crop fields at different scales with the data 

remotely sensed from space-borne, airborne and ground-based platforms.  Ground-based remote sensing techniques offer 

portability, flexibility and controllability in applications for precision agriculture.  In weed management, crop injury from 

off-target herbicide spray drift and herbicide resistance in weeds are two important issues.  For precision weed management, 

ground-based hyperspectral remote sensing techniques were developed for detection of crop injury from dicamba and 

differentiation between glyphosate resistant and sensitive weeds.  This research presents the techniques for ground-based 

hyperspectral remote sensing for these two applications.  Results illustrate the advantages of ground-based hyperspectral 

remote sensing for precision weed management. 
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1  Introduction  

Agricultural remote sensing has been developed and 

applied for observation of crop fields for soil variability, 

crop growth status, crop stress from weeds, pests, 

nutrition, and water deficiencies to provide prescription 
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data to guide precision operations
[1-5]

.  Remote sensing 

for precision agriculture provides observation at the field 

scale to map within-field variability with high-resolution 

data for effective prescription of variable-rate 

equipment
[4,6]

.  Remote sensing systems and methods 

can be effective and versatile to provide timely data for 

precision agriculture. 

Weed management is an important part of crop 

production.  Traditional weed management was 

conducted based on manual crop field monitoring and 

sampling, which is expensive, laborious and 

time-consuming.  Remote sensing has provided an 

approach to rapid acquisition of spatial data over crop 

fields for timely decision support to improve weed 

management in crop production
[7,8]

.  In recent years with 

the development of sensor and transducer technologies, 

remote sensing has been improved for weed sensing and 

control, especially with hyperspectral sensing and 
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imaging
[9-11]

. 

Remote sensing systems are typically on the platforms 

of satellites, aircraft and ground on-the-go vehicles.  

This research focused on the ground-based systems and 

hyperspectral techniques we have developed and applied 

in the past few years.  Ground-based remote sensing 

offers portability, flexibility and controllability compared 

to space-borne and airborne remote sensing.  For 

precision weed management, we have developed 

cost-effective ground-based hyperspectral remote sensing 

(GBHRS) systems and methods for detection analysis of 

crop injury from dicamba and differentiation between 

glyphosate resistant and sensitive weeds.  This research 

presents the techniques of GBHRS we have developed for 

these two applications.  The results illustrated the 

advantages of GBHRS for precision weed management. 

2  GBHRS platforms and sensors 

GBHRS has various platforms for laboratory and field 

studies.  The laboratory platform is used for studies of 

greenhouse plants and plant leaves sampled from the field 

with controlled illumination and fixed leaf sample 

position under the sensor.  The field platform is used for 

studies of plant canopy in the field that must account for 

uncertainties of sun light intensity, sun angle, and wind.  

The sensors typically used include a non-imaging 

spectroradiometer and multispectral and hyperspectral 

cameras.  We have configured hyperspectral 

non-imaging and imaging sensors for laboratory and field 

studies.  However, wind interference was a challenge 

when implementing a field on-the-go line-scan 

hyperspectral imaging system. 

2.1  Handheld spectroradiometer 

We used the FieldSpec 2 handheld spectroradiometer 

(ASD Inc., Boulder, CO, USA) to rapidly measure plant 

canopy in the field to provide visible-near infrared (VNIR) 

spectral sensing of plants.  The measuring range of the 

spectroradiometer is 325-1075 nm, with spectral 

resolution of 3 nm within the range of 350-1000 nm of 

which is in our concern for plant sensing in the VNIR 

bands.  The spectral sampling interval was 1 nm.  The 

plant reflectance, R, is calculated with the following 

equation: 

s d

w

w d

I I
R R

I I


 


             (1) 

where, Is is the radiance of the measured plant; Iw is the 

radiance of the white reference; Id is the radiance of dark 

current of the spectroradiometer; Rw is the reflectance of 

the white reference from the calibration file provided by 

the factory of the white reference.  The white reference 

was a 0.3×0.3 m Spectrolon® white reference board 

(Labsphere, North Sutton, GH, USA) with nominal 

reflectance of 99%.  

2.2  Hyperspectral imaging system in laboratory 

The Resonon Pika II hyperspectral camera (Resonon, 

Bozeman, MT) was used for hyperspectral imaging in the 

laboratory.  The laboratory system mounts the camera 

on a stand to capture images.  The Pika II system is a 

push-broom hyperspectral sensor with a spectral range of 

400-900 nm in 240 wavelength bands.  An objective 

lens with a 23 mm focal length gives the camera a 12° 

field of view.  Typically, the camera is held about 66 cm 

above the plants, which results in a spatial resolution at 

about 0.24×0.24 mm/pixel.  The high spatial resolution 

permits a large number of pure plant pixels to be 

collected and analyzed.  

The camera stand is modeled after a carpenter’s 

sawhorse with a linear motor attached to the cross bar of 

the sawhorse.  The camera is attached to the linear 

actuator, which is used to move the camera in a linear 

scanning motion during imaging.  The sample is placed 

below the camera and illuminated by a pair of 70 watt 

quartz-tungsten-halogen illuminator reflectance lamps, 

which integrated a reflector to produce stable illumination 

over the 350 nm to 2500 nm range (ASD Inc., Boulder, 

CO), located at opposite ends of the crossbar holding the 

camera and linear motor.  

Light condition is an important consideration in a 

laboratory setting, and it is difficult to get proper 

configuration.  The main issue with light condition is 

uneven light intensity.  This is because the light intensity 

from most illumination sources is angle and to a lesser 

extent time dependent.  The time dependency typically 

occurs when the lights are initially turned on and 

dampens after the lights and electronics heat up.  

However, if the lights utilize alternating current, they may 
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constantly flicker, which will result in a striped 

illumination pattern in an image acquired using a 

pushbroom type sensor.  Thus, it is important to use 

direct current with illumination sources and let the 

illumination sources have enough time to stabilize before 

collecting data.  The angle dependency of the light 

intensity is more difficult to solve however.  Typically 

illuminators have the highest intensity along the beam 

axis and reduce in intensity as the angle from the beam 

axis increases.  In spite of the uneven light intensity, if 

the sample is approximately two dimensional in shape, 

and can be laid flat on the stage for imaging, then precise 

reflectance measurements can be obtained through sensor 

calibration.  This requires that white reference and dark 

reference images be taken, and the mean spectrum from 

each reference is used for calibration.  However, if the 

sample is three dimensional, then the light in the entire 

view frustum must be considered.  Most likely it will be 

impossible to get the light intensity even in three 

dimensions.  In order to minimize the lighting intensity 

variability, we directed the lights so the beam axes from 

the lights crossed about 60 cm above the sample stage 

that one light focused in front of the other on the sample 

stage (Figure 1).  We also found it beneficial to image 

plants of approximately the same size and shape.  This 

resulted in more consistent illumination of the samples. 
 

 

Figure 1  Lights beam crossing on about 60 cm above the sample 

stage for hyperspectral imaging 
 

2.3  On-the-go hyperspectral imaging system 

When deployed in the on-the-go configuration for 

field study, the camera mount is attached to the 3-point 

hitch behind a standard tractor.  This provides a very 

secure connection between the camera and the tractor, 

and allows the camera height and pitch to be adjusted on 

the go using the tractor hitch.  The camera mount uses 

the same crossbar that is on the laboratory stand, and 

attaches to a pole (Figure 2).  The camera mount 

functions similarly to the laboratory function.  However, 

precautions have to be taken because of environmental 

conditions to avoid water from rain or irrigation systems 

being exposed on the camera and electronics at all cost.  

Fortunately, the best imaging conditions are found on 

cloudless days between 10:00 am and 2:00 pm, so rain is 

not typically an issue.  However, high temperatures can 

be encountered in these conditions.  Based on 

experience, we have determined that there is an issue with 

the electronics overheating in the linear actuator.  When 

it gets too hot, the linear actuator stops working.  The 

solution we have found is to blow compressed air on the 

electronics components of the motor to cool them off.  

Typically, the procedure restores function within 30 

seconds, so it is not an issue as far a data collection is 

concerned.  When the hyperspectral camera gets hot, the 

amount of thermal noise in the charged coupled device 

(CCD) sensor increases and alters the sensitivity of the 

camera.  In order maintain the calibration, a white and 

dark reference is collected each time an image is 

collected.  These two values (along with the image of 

the plant canopy) are used to compute reflectance of the 

plants using Equation (1). 
 

 

Figure 2  Field on-the-go system hyperspectral imaging system. 
 

Another issue encountered when measuring plant 

canopy in the field is wind interference, which causes the 

plants to move during image scanning to have images 

with twisted plant shapes.  This makes visual 

identification of plants difficult due to distortion of plant 

morphology in the images.  However, the spectral 

signature of the plants can still be extracted for spectral 

analysis if the background can be removed from the 

vegetation.  If there are no other plants in the image, and 
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the background is bare soil (as is common in agricultural 

fields), no additional procedures need to be taken in the 

field because the spectrum of soil is very different from 

the spectrum of plants.  In cases where there may be 

other plants in the background, we place a non-reflective 

black felt sheet around the plant to act as the background.  

The spectrum of felt is also very different from the 

spectrum of plants (Figure 3), so it is easy to segment the 

plant pixels in the image.  In the data analysis, once all 

the plant pixels are labeled, they are used to compute the 

mean spectral signature of the plant. 
 

 

 

Figure 3  Placement of felt around the target weed and the spectral 

curves of the plant and the felt 

3  Applications 

3.1  Detection and characterization of crop injury 

from dicamba herbicide 

3.1.1  ASD handheld spectroradiometer for in-field early 

detection of soybean injury from dicamba 

In January 2015, USDA announced deregulation of 

Monsanto’s Roundup Ready 2 Xtend™ soybean (the first 

industrial biotech-stacked soybean trait with both 

dicamba and glyphosate herbicide tolerance) and 

Bollgard II® XtendFlex™ cotton (the first triple stack 

herbicide-tolerance technology in cotton, with tolerance 

to dicamba, glyphosate and glufosinate herbicides) 

(Monsanto Company, St, Louis, MO).  The Roundup 

Ready 2 Xtend Crop System is an advanced weed 

management tool in the fight against glyphosate-resistant 

and tough-to-control broadleaf weeds in soybeans and 

cotton.  Although the launch of dicamba-resistant trait 

cotton and soybean is still pending approval of new 

dicamba formulations by USEPA (U.S. Environmental 

Protection Agency, Washington DC), off-target dicamba 

drift from routine use in dicamba-resistant crops onto 

susceptible crops has been a concern.  In Mississippi, 

there was one dicamba drift complaint in each of the 

years, 2012 and 2013 (Source: John Campbell, Bureau of 

Plant Industry, MS Dept. Agriculture and Commerce).  

It can be predicted that with the adoption of the Roundup 

Ready 2 Xtend Crop System in the near future the 

concern would be much more with significantly increased 

complaints. 

Remote sensing provides a cost-effective approach to 

detect changes in canopy spectral properties in crop 

injury from off-target herbicide spray.  We have 

assessed crop injury from the off-target of aerially applied 

glyphosate using aerial color-infrared (CIR) imagery for 

cotton
[12]

 and soybean
[13]

.  However, early detection of 

the injury before appearance of visible injury symptoms 

is needed for farmers to prevent yield losses.  Our 

previous studies have shown that hyperspectral 

reflectance measurements can be used to detect 

glyphosate injury of soybean earlier than appearance of 

visible injury symptoms
[14,15]

.  The purpose of the study 

is to characterize hyperspectral reflectance properties of 

soybean treated with and without dicamba and investigate 

the parameters from in-field measured hyperspectral data 

for early detection of soybean injury from simulated 

low-dose dicamba drift.  

For the study, a 4.5 hm
2
 field in USDA-ARS Crop 

Production Systems Research Farm in Stoneville, 

Mississippi (central latitude: 33.445062° and central 

longitude: −90.869967°) was buffered by corn plants to 

isolate the vapor drift of dicamba.  In the east side of the 

field 32 plots were planted soybean (Progeny P4819LL) 

on May 7, 2014.  Each plot consisted eight rows with 

0.97 m wide and 24 m long.  In the 32 plots 4 blocks 
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were formed with 8 plots in each.  Due to too many 

weeds in the most southern block, analysis was on the 

other three blocks.  So, the experimental design was a 

randomized complete block design with 3 replications 

with plot treatments, 0.0X (control), 0.05X and 0.1X 

where, X=0.56 kg ae/hm
2
 of dicamba.  On June 17, 

2014, six weeks after soybean planting and soybean at 

5-trifoliolate to 6-trifoliolate leaf stage, dimethylamine 

salt of dicamba, RIFLE® (Loveland Products, Inc., 

Greeley, CO) was applied using a tractor mounted 

sprayer with Tee Jet 4003 standard flat-spray nozzles 

delivering 140 L/hm
2
 of water at 193 kPa.  No 

postemergence herbicides were applied up to 3 weeks 

after dicamba treatment for taking various measurements.  

Three weeks after dicamba treatment, other 

postemergence herbicides were applied as needed to keep 

the plots weed-free, and the field was furrow irrigated as 

needed.  The soybean yield was measured and recorded 

at the time of harvest on September 9, 2014. 

For early detection of soybean injury from low-dose 

dicamba, ASD Handheld 2 Portable Spectroradiometer 

(ASD Inc., Boulder, CO) was used to measure on the top 

of the soybean canopy at 24 HAT (Hours after Dicamba 

Treatment), 48 HAT and 72 HAT.  For radiometric 

calibration the 0.3 m×0.3 m Spectrolon® white reference 

target with 99% nominal reflectance (Labsphere, North 

Sutton, NH) was used.  In the field measurement, within 

each plot, three random points on plant canopy were 

measured with sensor optimization, white reference 

measurement and a dark current measurement.  

Figure 4 shows the average percent reflectance curves 

of 0.0X, 0.05X and 0.1X at 24 HAT, 48 HAT and     

72 HAT, respectively.  From the curves it can be seen 

that regardless HAT they are differentiable at the 

wavelength of 550 nm, 673 nm and 800 nm, especially 

0.0X from 0.1X.  

The sensitive wavelengths of 550 nm, 673 nm and 

800 nm are corresponding to narrow green band (Green), 

red band (Red) and near-infrared (NIR) band, 

respectively.  With them, red normalized difference 

vegetation index (rNDVI) and green normalized 

difference vegetation index (gNDVI) can be calculated to 

characterize plant vigor and greenness, respectively, as: 

NIR Red
rNDVI

NIR Red






[16]
            (2) 

NIR Green
gNDVI

NIR Green






[17]
           (3) 

Although the determination of the sensitive 

wavelengths is subjective, it is an effective and practical 

way to rapidly generate simple vegetation indices such as 

rNDVI and gNDVI. 

 
a. 24 HAT 

 
b. 48 HAT 

 
c. 72 HAT  

 

Note: Sensitive bands: 550 nm (Green), 673 nm (Red), and 800 nm (NIR). 

Figure 4  Average percent reflectance curves of 0.0X, 0.05X  

and 0.1X at 24 HAT, 48 HAT and 72 HAT, respectively 
 

Table 1 shows rNDVI and gNDVI at 24, 48 and    

72 HAT in 0.0X, 0.05X and 0.1X.  The Duncan’s 

multiple range tests at the confident level of 95% provide 

that in all the cases 0.0X is significant from 0.1X and at 

72 HAT and gNDVI is significantly different in 0.0X, 

0.05X and 0.1X. 
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Table 1  Duncan mean separation of rNDVI and gNDVI at 

different doses and HATs (α=0.05) 

 rNDVI Reduction/% gNDVI Reduction/% 

HAT 
Dose 

24 48 72 24 48 72 

0.0X 0
b
 0

b
 0

b
 0

b
 0

b
 0

c
 

0.05X 6
ba

 11
b a

 6
b
 9

ba
 15

ba
 10

b
 

0.1X 14
 a
 19

a
 17

a
 20

a
 27

a
 28

a
 

Note: Different letters mean significantly different. 
 

The results indicated that rNDVI and gNDVI can 

detect soybean injury from  dicamba at the low rate of 

0.1X reliably at 24 HAT, 48 HAT, and 72 HAT at 95% 

confidence level, and hyperspectral remote sensing has a 

great potential in early detection of soybean injury from 

exposure to off-target dicamba drift in the field.  

3.1.2  Laboratory hyperspectral imaging system for 

characterization of soybean injury from dicamba 

Hyperspectral imaging provides an approach to 

assessing crop injury from different doses of dicamba, 

which simulates crop injury from off-target drift of 

dicamba.  Compared to the method using ASD 

spectroradiometer, hyperspectral images can be used to 

separate the plant from the ground accurately to focus on 

the vegetation signatures of the healthy or injured crop.  

The study of hyperspectral imaging for assessing crop 

injury from dicamba started in 2012 yearly until 2014.  

The field of the study is in the 4.5 hm
2
 field of 

USDA-ARS Crop Production Systems Research Farm in 

Stoneville, Mississippi, as mentioned above.  The field 

was buffered by corn plants to prevent the vapor drift of 

dicamba from the neighboring fields.  In each 

experimental area, 32 plots were planted.  Each plot was 

eight rows with 0.97 m wide and 24 m long.  In 2012, 

the field was planted cotton and soybean for experiments.  

However, the first field dicamba treatment could not be 

completed due to severe weather.  The plants of the 

retreated field must be differentiated to extract useful 

information for the experiment.  In 2013, with the lesson 

of 2012, in the east side of the field 32 plots were planted 

soybean (Pioneer 94Y90) on May 9 and in the west side 

of the field, as a backup, 32 plots were planted the same 

soybean on May 31.  In 2014, the experiment was 

successful on the east side of the field so the backup field 

in west side was not used. In this research, the results of 

2013 are presented.  

On June 5, 2013, the east side of the field was treated 

with dicamba, but heavy thunder storms came on right 

after the treatment was completed.  It was thus surmised 

that applied herbicide was washed out.  Therefore, on 

July 1, when soybean was at the four-trifoliolate stage, 

the west side of the backup field was treated with 

dicamba at 0.0X (control), 0.05X, 0.1X, 0.2X, 0.3X, 0.5X 

and 1.0X, where X=0.56 kg ae/hm
2
 of dicamba.  

Dimethylamine salt of dicamba, RIFLE® was applied 

using a tractor mounted sprayer with Tee Jet 4003 

standard flat-spray nozzles delivering 140 L/hm
2
 of water 

at 193 kPa.  Each treatment (0.05X, 0.1X, 0.2X, 0.3X, 

0.5X and 1.0X) was mixed with 57 L water and 150 ML 

induce adjuvant.  No postemergence herbicides were 

applied up to 3 weeks after dicamba treatment for taking 

various measurements.  Three weeks after dicamba 

treatment, other postemergence herbicides were applied 

as needed to keep the plots weed-free, and the field was 

furrow irrigated as needed.  

After field treatment five soybean plants from each 

plot were randomly sampled in field and transported to 

laboratory for plant imaging using the lab settings of the 

Pika II hyperspectral imaging system at 1, 2, and 3 weeks 

after treatment (WAT).  The white reference and dark 

current were measured daily before plant imaging or 

when the lighting condition in the lab significantly 

changed.  The white reference target was the 0.3 m×0.3 

m Spectrolon® white reference board with 99% nominal 

reflectance.  The light source was a pair of 70 watt ASD 

quartz-tungsten-halogen illuminator reflectance lamps, as 

described previously. 

Observation of the measured spectral curves indicated 

that, regardless HAT and X (dose), the curves were 

differentiable at the wavelength of 550 nm, 680 nm and 

760 nm, which correspond to narrow green band (G), red 

band (R) and near-infrared (NIR) band, respectively.  

With the bands, rNDVI and gNDVI were calculated as 

indicated in Figure 5.  From the figure, it can be seen 

that at 1 WAT, both NDVIs indicate a dose response of 

plants; gNDVI and rNDVI showed growth stimulus at 

low doses of 0.05X and 0.1X.  At 2 WAT both indices 

indicated the death level of the plant starting at the dose 

of 0.2X.  At 3 WAT both NDVIs indicated some 
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re-growth at high dose such as rNDVI at 1.0X.  Results 

indicated that the spectral information extracted from 

hyperspectral imaging in lab settings can be used to 

assess soybean injury from different doses of dicamba in 

the field.  

 
a. rNDVI 

 

b. gNDVI 

Figure 5  rNDVI and gNDVI calculated from Pika II 

hyperspectral images to assess soybean injury from different doses 

of dicamba in field 
 

3.1.3  Field on-the-go hyperspectral imaging system for 

characterization of soybean injury from dicamba 

For the study of 2013, at 1, 2 and 3 WAT after lab 

imaging, the Pika II system was mounted on a tractor to 

move over the field to image the soybean plants in each 

plot.  There existed two issues during field imaging.  

One was sensor overheating under direct sun light, which 

resulted in the failure of imaging at 2 WAT.  The other 

was wind disturbance, which resulted in deformation of 

leaves in the images due to mismatch of imaging line 

scan and leaf movement even with a very low wind.  

The solution of sensor overheating was to build a fan 

beside the imaging sensor to blow out the heat.  Wind 

disturbance was minimized by shutting off the tractor and 

lengthening the distance from the sensor to the top of the 

soybean canopy to confine the wind effect within a pixel; 

image processing automatically segmented plant pixels 

from the soil background by thresholding each band with 

the green portion of the spectrum. 

Due to the uncertainties in field imaging from weather 

and sensor system, the sensitive bands of the spectral 

curves changed from 550 nm, 680 nm and 760 nm in lab 

imaging to 565 nm, 691 nm and 735 nm in field imaging.  

Figure 6 shows that field imaging was closely related to  

lab imaging through rNDVI and gNDVI.   

 
a 

Note: y represents rNDVIL and x represents rNDVIF. 

 

b 

Note: y represents gNDVIL and x represents gNDVIF. 

Figure 6  Correlation of lab measured rNDVI and field measured 

rNDVI (a) and lab measured gNDVI and field measured gNDVI 
 

From 1 WAT to 3 WAT SNR (signal noise ratio) of 

rNDVI in lab increased from 1.86 to 22.47 while the SNR 

of gNDVI in lab only increased from 1.29 to 1.34.  This 

indicated that 3 WAT was the best period for lab imaging 

used as a surrogate of field imaging, which is much less 

uncertain, through rNDVI. SNR was calculated as: 

FNDVI
SNR

S


               (4) 

where, ΔNDVIF = (NDVIF,max − NDVIF,min); 

2

, ,1
( )

n

L i F ii
NDVI NDVI

S
n







 is the standard 

deviation of NDVIL; NDVI is whatever rNDVI or gNDVI; 

NDVIL is the NDVI from lab imaging; NDVIF is the 

NDVI from field imaging; and n is the number of data 

points.  It is important to note that Equation (4) assumes 
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that the true NDVI is measured in the lab with very high 

precision, and the difference between the lab 

measurement and field measurement generates the error.  

The precision of reflectance measurements obtained in 

the lab is extremely high, but in order to assure the 

accuracy, care must be taken to transport samples from 

the field to the lab and process them quickly; otherwise, 

the samples will begin to decay quickly
[18,19]

. 

3.2  Identification and characterization of glyphosate 

resistance of weeds 

3.2.1  Laboratory hyperspectral imaging systems for 

characterization of glyphosate resistance of Palmer 

amaranth and Italian ryegrass  

Repeated and intensive use of herbicide has exerted a 

high selection pressure on weed populations resulting in 

evolution of herbicide-resistance in weeds.  Glyphosate 

[N-(phosphonomethyl) glycine], as the most widely used 

herbicide, has increased use in frequency and amount in 

the fields planted with genetically modified (GM) 

glyphosate-resistant (GR) crops such that repeated and 

intensive use of glyphosate has exerted a high selection 

pressure on weed populations resulting in evolution of 

GR weeds, such as GR Palmer amaranth, which was 

reported in 25 states in the United States
[20]

, and GR 

Italian ryegrass, which was reported in seven states in the 

United States
[9]

.  Both GR Palmer amaranth and GR 

Italian ryegrass are troublesome weeds in corn, cotton 

and soybean fields.  GR Palmer amaranth can emerge 

throughout the growing season, grow rapidly, reaching 

heights in excess of 2 m, quickly overtopping crops such 

as cotton and soybean, and reduce yield and harvest 

efficiency.  Italian ryegrass is an erect winter annual 

with a biennial-like growth habit.  It grows vigorously in 

winter and early spring and is highly competitive.  GR 

Italian ryegrass populations could seriously jeopardize 

preplant burndown options and planting operations in 

reduced-tillage crop production systems. 

Not all weed field populations are resistant to 

glyphosate. GR and glyphosate-sensitive (GS) Palmer 

amaranth or Italian ryegrass look alike, and visually it is 

difficult to distinguish the GR plants from GS plants.  

The objective of this project is to develop hyperspectral 

imaging technology for rapid, consistent and accurate 

differentiation between GR and GS weeds from soybean 

field.  The results could provide guideline data to allow 

crop producers and consultants to effectively identify GR 

weeds in crop fields for site-specific weed management.  

The study was first conducted in greenhouse
[21,22]

.   

In greenhouse two groups of Palmer amaranth were 

planted consecutively in September-October 2012 and 

November-December 2012 for genetically heterogeneous 

(27 GS and 25 GR) and homogeneous (61 GS and 72 GR) 

plants, respectively.  The genetically heterogeneous 

group was imaged at the 6-7 leaf growth stage and the 

genetically homogeneous group was imaged in the early 

flowering stage.  Two hundred twenty six heterogeneous 

Italian ryegrass plants (119 GR, 107 GS) were grown and 

imaged twice at three and four weeks after emergence. 

The Resonon Pika II hyperspectral camera mounted 

on a stand was used to capture images of the Palmer 

amaranth and Italian ryegrass planted in greenhouse.  In 

image processing each percent reflectance image was 

segmented to separate the plant from the background by 

thresholding the band centered at 770 nm at 60% of the 

maximum value in the image.  Plants typically reflect 

more light than soil in the near-infrared portion of the 

spectrum.  The 770 nm band was chosen based on the 

tests providing acceptable segmentation.  After image 

segmentation, all the pixels labeled as the plant were 

averaged to obtain a mean reflectance for each plant.  

The mean reflectance was then normalized to eliminate 

the effect of taller plants being exposed to higher light 

intensity.  Normalization was accomplished by dividing 

each spectral value by the magnitude of square root of 

sum of all spectral values.  Then, a subset of 

hyperspectral bands was chosen using a forward selection 

algorithm to optimize the area under the receiver 

operating characteristic (ROC) between GR and GS 

plants.  The dimensionality of selected bands is reduced 

using linear discriminant analysis (LDA).  Finally, the 

maximum likelihood classification was conducted for 

plant sample differentiation.  

Results show that the images of Palmer amaranth 

determined 14 wavebands from within or near the regions 

of 400-500 nm, 650-690 nm, 730-740 nm and 800-   

900 nm for classification of unknown GR and GS plants 
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with an overall validation accuracy of 94% for 

greenhouse-grown plants (22 GS and 25 GR).  The 

overall classification accuracy of unknown Italian 

ryegrass plants (27 GS and 30 GR) was 75% for the 

measurement, three weeks after emergence and 80% four 

weeks after emergence depending on the age of the 

plants.  

3.2.2  Field on-the-go hyperspectral imaging systems for 

characterization of glyphosate resistance of Palmer 

amaranth  

For field study
[12]

 about 200 Palmer amaranth plants 

(100 GS and 100 GR) similar to the genetically 

heterogeneous group were grown in the greenhouse until 

they were 10-15 cm tall when 160 of them (80 GS and  

80 GR) were transplanted into the experiment field in 

July 2013.  The plants were imaged in early August 

2013, when they were about 75-120 cm tall. 

The Pika II hyperspectral camera used in the 

laboratory was adapted to mount on a three-point hitch on 

a tractor to allow flexible vertical and horizontal move to 

image the plants in the field.  Imaging of each plant took 

about 3-4 min with image calibration by collecting white 

reference at the plant canopy.  At the time of field 

imaging, the height of the plants varied from 75 cm to 

120 cm so that the height of the camera was adjusted 

consistently to maintain the sensor at 66 cm above the top 

of crop canopy. 

The image processing and analysis were performed 

similar to what have done for laboratory imaging.  The 

770 nm-based image segmentation algorithm was 

especially effective in processing field plant images 

acquired under rugged field conditions. 

The results show that the images of Palmer amaranth 

also determined 14 wavebands from within or near the 

regions of 400-500 nm, 650-690 nm, 730-740 nm and 

800-900 nm for classification of unknown GR and GS 

plants with an overall validation accuracy of 96% for 

field-grown plants.  

3.3  Chlorophyll fluorescence signal extraction from 

hyperspectral images for characterization of crops 

and weeds  

Fundamental vegetation characterization of remote 

sensing is based on spectral reflectance measurement of 

plant leaf or canopy.  However, reflectance-based 

remote sensing has two drawbacks
[23]

.  First, the spectral 

indices and features derived from reflectance data, such 

as rNDVI and simple ratio vegetation index (Red/NIR), 

are sensitive to low chlorophyll contents but tend to 

saturate at higher chlorophyll levels.  Second, leaf 

reflectance spectra can reflect foliar optical properties, 

but give no insight into the biophysical status of plants.  

As compared to reflectance data, plant leaf chlorophyll 

fluorescence is closely related to the photosynthesis 

process and could be used as an indicator of the 

physiological state of plant
[24,25]

. 

The onset of soybean injury from glyphosate has been 

successfully detected
[23]

 through analysis of chlorophyll 

fluorescence signal extracted from hyperspectral 

measurement of plant leaves using an ASD integrating 

sphere (ASD Inc., Boulder, Colorado) coupled with a 

non-imaging ASD FieldSpec 3 Hi-Res spectroradiometer 

(ASD Inc., Boulder, Colorado) and a removable filter for 

high-pass at 700 nm.  The purpose of this study was to 

evaluate Pika II imaging system to image plants with 

spectral images to extract fluorescence signals.  The 

evaluated system and methods will be prepared for 

further studies to characterize plant status. 

The process of fluorescence signal extraction from 

hyperspectral images is described as follows.  The 

spectral reflectance of the plants was imaged using the 

lab settings of the Pika II hyperspectral imaging system 

with a spectral resolution of 2.1 nm.  The spectral 

images were collected in digital number (DN) mode and 

the plants in the images were segmented out from the 

background.  Then, the spectral reflectance of the plant 

in each image can be calculated in average as: 

s d

w

w d

DN DN
R R

DN DN





             (5) 

where, DNs is the digital number of plant sample; DNw is 

the digital number of white reference; DNd is the digital 

number of dark current; and Rw is the reflectance of the 

white reference which was provided by the manufacturer 

(0.3 m × 0.3 m Spectrolon® white reference board, 

Labsphere, North Sutton, NH).  

In order to extract fluorescence signals, the spectral 

reflectance of each plant was imaged the second time.  
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At this time, a filter was mounted on light source to limit 

the light going through it to illuminate the plant sample. 

Because the spectral range that can excite the chlorophyll 

fluorescence is from 400 nm to 700 nm, images with the 

long-pass filters in front of the light source should filter 

out the fluorescence signal.  With the filter off, the 

reflectance spectrum as imaged and calculated with 

equation (4) contains the contribution of both the 

reflected radiance and chlorophyll fluorescence.  The 

spectral reflectance with filter, Rf, can be similarly 

imaged and calculated with Equation (4).  So, the 

chlorophyll fluorescence, CF, can be extracted through 

calculation as follows: 

CF = (R − Rf)×Lrad              (6) 

where, Lrad is the radiance of the light source which is  

provided by the manufacturer (70 watt quartz-tungsten- 

halogen illuminator reflectance lamp, ASD Inc., Boulder, 

CO). 

Figure 7 shows the light condition for imaging Italian 

ryegrass, as mentioned above that it is a weed that 

develops glyphosate resistance in crop fields, with and 

without a 650 nm long-pass filter in front of the light 

source.  Figure 8 shows typical digital number curves 

used to calculate the reflectance with and without a   

650 nm long-pass filter for Italian ryegrass.  The 

fluorescence signal curve calculated from the difference 

of the two reflectances is also shown in the figure.  The 

peaks in the fluorescence curve at 685 nm and 748 nm are 

critical features from the signal to characterize the status 

of the plant, species, vigor or stress.  
 

 

a                                                                    b 

Figure 7  Pika II imaging Italian ryegrass without (a) and with (b) a 650 nm long-pass filter in front of the light source 

 

a  b 
 

Figure 8  (a) Digital number curves of Italian ryegrass sample and white reference with and without a 650 nm long-pass filter on light 

source (b) Chlorophyll fluorescence signal extracted from the data in (a) 

 
 

4  Conclusions 

Our studies indicated that GBHRS is versatile and 

effective for providing guiding data and information for 

precision weed management.  The handheld 

hyperspectral radiometer is portable and effective for 

rapid, early detection of the onset of soybean injury from 

dicamba in the low spray rate within three days after 

treatment in field.  The hyperspectral imaging system in 

laboratory under controlled illumination condition 

provided high-quality images for precision analysis of 

field soybean injury from dicamba with accurate crop 
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response to the doses of sprayed dicamba, high-accuracy 

differentiation of GR weeds from GS weeds with the 

accuracies from 75% to 95%, and extraction of 

chlorophyll fluorescence signals from plant spectra to 

develop innovative approach for advancement of the 

technology.  The hyperspectral imaging system mounted 

on the tractor could collect on-the-go image data across 

the field for effective plant canopy spectral analysis, 

especially in field GR and GS weed differentiation with 

an over 90% accuracy, although the challenges exist from 

wind interference to sensor line scanning and sensor 

overheat under persistent sunshine.  

The next studies for us will be to optimize the 

configurations of the laboratory and field systems to 

remove the data artifacts and minimize system and 

environmental interferences.  The improved systems 

will be integrated to coordinate with low-altitude 

unmanned aerial remote sensing systems to provide 

timely and accurate information for field robots and 

herbicide application systems for effective weed 

management. 
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